- Li, C., Sun, L., Niu, J., Reka, A. A., Feng, P., and Garcia, H. (2023). “Core-shell Bi-containing spheres and TiO2 nanoparticles co-loaded on kaolinite as an efficient photocatalyst for methyl orange degradation”. Catalysis Communications, 175: 106609.
- Hir, Z. A. M., Moradihamedani, P., Abdullah, A. H., and Mohamed, M. A. (2017). “Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye”. Materials Science in Semiconductor Processing, 57: 157-165.
- Chiam, S.-L., Pung, S.-Y., and Yeoh, F.-Y. (2020). “Recent developments in MnO2-based photocatalysts for organic dye removal: A review”. Environmental Science and Pollution Research, 27: 5759-5778.
- Fathima, J. B., Pugazhendhi, A., Oves, M., and Venis, R. (2018). “Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes”. Journal of Molecular Liquids, 260: 1-8.
- Alharthi, F. A., Al-Zaqri, N., El Marghany, A., Alghamdi, A. A., Alorabi, A. Q., Baghdadi, N., Al-Shehri, H., Wahab, R., and Ahmad, N. (2020). “Synthesis of nanocauliflower ZnO photocatalyst by potato waste and its photocatalytic efficiency against dye”. Journal of Materials Science: Materials in Electronics, 31: 11538-11547.
- Navada, K. M., G. K, N., D’Souza, J. N., Kouser, S., and D. J, M. (2021). “Synthesis, characterization of phyto-functionalized CuO nano photocatalysts for mitigation of textile dyes in waste water purification, antioxidant, anti-inflammatory and anticancer evaluation”. Applied Nanoscience, 11: 1313-1338.
- Nyankson, E., and Kumar, R. (2019). “Removal of water-soluble dyes and pharmaceutical wastes by combining the photocatalytic properties of Ag3PO4 with the adsorption properties of halloysite nanotubes”. Materials Today Advances, 4: 100025.
- Hasanpour, M., and Hatami, M. (2020). “Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study”. Journal of Molecular Liquids, 309: 113094.
- Kumar, S., Kaushik, R., and Purohit, L. (2021). “Novel ZnO tetrapod-reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of phenolic compounds and MB dye”. Journal of Molecular Liquids, 327: 114814.
- Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Chandra, R., and Bharagava, R. N. (2021). “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety”. Journal of Environmental Chemical Engineering, 9(2): 105012.
- Patil, M. R., and Shrivastava, V. (2016). “Adsorptive removal of methylene blue from aqueous solution by polyaniline-nickel ferrite nanocomposite: a kinetic approach”. Desalination and Water Treatment, 57(13): 5879-5887.
- Alakhras, F., Alhajri, E., Haounati, R., Ouachtak, H., Addi, A. A., and Saleh, T. A. (2020). “A comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites”. Surfaces and Interfaces, 20: 100611.
- Mondal, A., Adhikary, B., and Mukherjee, D. (2015). “Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482: 248-257.
- Kaur, J., and Singhal, S. (2015). “Highly robust light driven ZnO catalyst for the degradation of eriochrome black T at room temperature”. Superlattices and Microstructures, 83: 9-21.
- Shah, A. A., Bhatti, M. A., Tahira, A., Chandio, A. D., Channa, I. A., Sahito, A. G., Chalangar, E., Willander, M., Nur, O., and Ibupoto, Z. H. (2020). “Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange”. Ceramics International, 46(8): 9997-10005.
- Bi, T., Du, Z., Chen, S., He, H., Shen, X., and Fu, Y. (2023). “Preparation of flower-like ZnO photocatalyst with oxygen vacancy to enhance the photocatalytic degradation of methyl orange”. Applied Surface Science, 614: 156240.
- Kaykhaii, M., Sasani, M., and Marghzari, S. (2018). “Removal of dyes from the environment by adsorption process”. Chemistry of Materials Journal, 6(2): 31-35.
- Ruan, W., Hu, J., Qi, J., Hou, Y., Zhou, C., and Wei, X. (2019). “Removal of dyes from wastewater by nanomaterials: a review”. Advanced Materials Letters, 10(1): 9-20.
- Molinari, R., Lavorato, C., and Argurio, P. (2017). “Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review”. Catalysis Today, 281: 144-164.
- Pattnaik, A., Sahu, J., Poonia, A. K., and Ghosh, P. (2023). “Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater”. Chemical Engineering Research and Design, 190: 667-686.
- Pourshirband, N., Nezamzadeh-Ejhieh, A., and Mirsattari, S. N. (2021). “The CdS/g-C3N4 nano-photocatalyst: brief characterization and kinetic study of photodegradation and mineralization of methyl orange”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 248: 119110.
- Sabir, A., Sherazi, T. A., and Xu, Q. (2021). “Porous polymer supported Ag-TiO2 as green photocatalyst for degradation of methyl orange”. Surfaces and Interfaces, 26: 101318.
- Kusior, A., Michalec, K., Jelen, P., and Radecka, M. (2019). “Shaped Fe2O3 nanoparticles–synthesis and enhanced photocatalytic degradation towards RhB”. Applied Surface Science, 476: 342-352.
- Rafique, M., Hamza, M., Shakil, M., Irshad, M., Tahir, M. B., and Kabli, M. R. (2020). “Highly efficient and visible light–driven nickel–doped vanadium oxide photocatalyst for degradation of Rhodamine B Dye”. Applied Nanoscience, 10: 2365-2374.
- Upadhyay, G. K., Rajput, J. K., Pathak, T. K., Pal, P. K., and Purohit, L. (2020). “Tailoring and optimization of hybrid ZnO: TiO2: CdO nanomaterials for advance oxidation process under visible light”. Applied Surface Science, 509: 145326.
- Mohamed Isa, E. D., Che Jusoh, N. W., Hazan, R., and Shameli, K. (2021). “Photocatalytic degradation of methyl orange using pullulan-mediated porous zinc oxide microflowers”. Environmental Science and Pollution Research, 28: 5774-5785.
- Song, Z., Wang, C., Shu, S., Liu, J., Liu, J., Li, Y., Huang, L., and Huang, L. (2022). “Facile synthesis CQDs/SnO2-x/BiOI heterojunction photocatalyst to effectively degrade pollutants and antibacterial under LED light”. Journal of Photochemistry and Photobiology B: Biology, 236: 112566.
- Subhiksha, V., Kokilavani, S., and Khan, S. S. (2022). “Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review”. Chemosphere, 290: 133228.
- Acedo-Mendoza, A. G., Infantes-Molina, A., Vargas-Hernández, D., Chávez-Sánchez, C. A., Rodríguez-Castellón, E., and Tánori-Córdova, J. C. (2020). “Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature”. Materials Science in Semiconductor Processing, 119: 105257.
- Sharma, S., Kumar, N., Mari, B., Chauhan, N. S., Mittal, A., Maken, S., and Kumari, K. (2021). “Solution combustion synthesized TiO2/Bi2O3/CuO nano-composites and their photocatalytic activity using visible LEDs assisted photoreactor”. Inorganic Chemistry Communications, 125: 108418.
- Heidarian, M. H., Nakhaei, M., Vatanpour, V., and Rezaei, K. (2023). “Evaluation of using clinoptilolite as a filter in drinking water wells for removal of lead (small-scale physical sand box model)”. Journal of Water Process Engineering, 52: 103558.
- Mehrabanpour, N., Nezamzadeh-Ejhieh, A., Ghattavi, S., and Ershadi, A. (2023). “A magnetically separable clinoptilolite supported CdS-PbS photocatalyst: Characterization and photocatalytic activity toward cefotaxime”. Applied Surface Science, 614: 156252.
- Hosseinzadeh, G., Ghasemian, N., and Zinatloo-Ajabshir, S. (2022). “TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity”. Inorganic Chemistry Communications, 136: 109144.
- Choi, Y. I., Jeon, K. H., Kim, H. S., Lee, J. H., Park, S. J., Roh, J. E., and Sohn, Y. (2016). “TiO2/BiOX (X= Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation”. Separation and Purification Technology, 160: 28-42.
- Yosefi, L., Haghighi, M., and Maleki, M. (2022). “Influence of solvent on solvothermal fabrication of BixOyIz nanophotocatalyst over Zn-Fe spinel for comparative demineralization of orange II and methylene blue under simulated solar light illumination”. Journal of Environmental Chemical Engineering, 10(3): 107613.
- Abuelwafa, A. A., Matiur, R. M., Putri, A. A., and Soga, T. (2020). “Synthesis, structure, and optical properties of the nanocrystalline bismuth oxyiodide (BiOI) for optoelectronic application”. Optical Materials, 109: 110413.
- Najafidoust, A., Haghighi, M., Asl, E. A., and Bananifard, H. (2019). “Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes”. Separation and Purification Technology, 221: 101-113.
- Sudharani, A., Kumar, K. S., Mangiri, R., Ratnakaram, Y. C., and Vijayalakshmi, R. P. (2021). “Morphology driven enhanced photocatalytic activity of CuO/BiOI nanocomposites”. Materials Chemistry and Physics, 258: 123891.
- Banas-Gac, J., Radecka, M., Czapla, A., Kusior, E., and Zakrzewska, K. (2023). “Surface and interface properties of TiO2/CuO thin film bilayers deposited by rf reactive magnetron sputtering”. Applied Surface Science, 616: 156394.
- Abbasi, E., Haghighi, M., Shokrani, R., and Shabani, M. (2020). “Copper plasmon-induced Cu-doped ZnO-CuO double-nanoheterojunction: in-situ combustion synthesis and photo-decontamination of textile effluents”. Materials Research Bulletin, 129: 110880.
- Nizet, S., Muñoz, E., Fiebich, B. L., Abuja, P. M., Kashofer, K., Zatloukal, K., Tangermann, S., Kenner, L., Tschegg, C., Nagl, D., and Scheichl, L. (2018). “Clinoptilolite in dextran sulphate sodium-induced murine colitis: Efficacy and safety of a microparticulate preparation”. Inflammatory Bowel Diseases, 24(1): 54-66.
- Farıas, T., Ruiz-Salvador, A. R., and Rivera, A. (2003). “Interaction studies between drugs and a purified natural clinoptilolite”. Microporous and Mesoporous Materials, 61(1-3): 117-125.
- Li, T., Wang, C., Wang, T., and Zhu, L. (2020). “Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet”. Applied Catalysis B: Environmental, 268: 118442.
- Vahabirad, S., Nezamzadeh-Ejhieh, A., and Mirmohammadi, M. (2022). “The coupled BiOI/(BiO) 2CO3 catalyst: brief characterization, and study of its photocatalytic kinetics”. Journal of Solid State Chemistry, 314: 123405.
- Narenuch, T., Senasu, T., Chankhanittha, T., and Nanan, S. (2021). “Sunlight-active bioi photocatalyst as an efficient adsorbent for the removal of organic dyes and antibiotics from aqueous solutions”. Molecules, 26(18): 5624.
- El-Trass, A., ElShamy, H., El-Mehasseb, I., and El-Kemary, M. (2012). “CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids”. Applied Surface Science, 258(7): 2997-3001.
- Rahmani, F., Haghighi, M., Vafaeian, Y., and Estifaee, P. (2014). “Hydrogen production via CO2 reforming of methane over ZrO2-Doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method”. Journal of Power Sources, 272: 816-827.
- Zhang, L., Menkhaus, T. J., and Fong, H. (2008). “Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers”. Journal of membrane science, 319(1-2): 176-184.
|