
تعداد نشریات | 20 |
تعداد شمارهها | 401 |
تعداد مقالات | 3,281 |
تعداد مشاهده مقاله | 4,653,133 |
تعداد دریافت فایل اصل مقاله | 3,158,231 |
General and specific combining ability for fruit-related traits in watermelon (Citrullus Lanatus) using Griffing’s method I | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 13، شماره 2 - شماره پیاپی 26، دی 2024، صفحه 53-61 اصل مقاله (708.49 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2025.20990.1380 | ||
نویسندگان | ||
Maryam Abdoli Nasab* ؛ Mehdi Rahimi؛ Ali Akbar Faramarzpour | ||
Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. | ||
تاریخ دریافت: 10 مهر 1403، تاریخ بازنگری: 01 اردیبهشت 1404، تاریخ پذیرش: 17 اردیبهشت 1404 | ||
چکیده | ||
One of the key goals of watermelon breeding is to develop superior hybrids with enhanced yield and quality. Hybrid efficiency depends on the general (GCA) and specific (SCA) combinatorial abilities of the inbred lines used in crosses. A complete diallel analysis was conducted to evaluate the breeding values of five watermelon ecotypes: Orzoeiyeh (P1), Hejrak (P2), Gerd (P3), Neyshabour (P4), and Yazd (P5). While most studied traits showed high GCA effects, all displayed significant SCA effects. A high Baker’s ratio, coupled with GCA being greater than SCA for days to fruit formation, number of fruits per plant, days to fruit maturity, and fruit weight, suggests the involvement of both additive and non-additive gene effects. Conversely, Baker’s ratios for fruit length (0.44), fruit rind thickness (0.42), and fruit sugar content (0.2) indicated the dominance of non-additive gene effects, whereas ratios for fruit weight (0.56), fruit rind weight (0.51), and fruit flesh weight (0.57) suggested an equal contribution of additive and non-additive gene effects in controlling these traits. Parents P4 and P2 demonstrated the best GCA for fruit number per plant and fruit quality, respectively. Based on SCA findings, the P2×P4 and P1×P2 crosses are recommended for producing high-yielding and high-quality hybrids, respectively. | ||
کلیدواژهها | ||
Diallel؛ Gene effects؛ GCA؛ Hybrid | ||
عنوان مقاله [English] | ||
برآورد قابلیت ترکیب پذیری عمومی و خصوصی در ارقام هندوانه (Citrullus Lanatus) برای صفات میوه بر اساس روش گریفینگ I | ||
نویسندگان [English] | ||
مریم عبدلی نسب؛ مهدی رحیمی؛ علی اکبر فرامرزپور | ||
گروه بیوتکنولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری، کرمان، ایران. | ||
چکیده [English] | ||
یکی از مهمترین اهداف پرورش هندوانه تولید هیبریدهای جدید با عملکرد و کیفیت میوه برتر است. کارایی یک هیبرید به تواناییهای ترکیبی عمومی (GCA) و تواناییهای ترکیبی خاص (SCA) خطوط همخون درگیر در تلاقیها مربوط میشود. یک مجموعه دی آلل کامل برای ارزش های اصلاحی پنج اکوتیپ هندوانه (ارزویه (P1)، هجرک (P2)، گرد (P3)، نیشابور (P4) و یزد (P5) بررسی شده است. در حالی که اثرات GCA بالا برای اکثر صفات مورد مطالعه مشاهده شد، ترکیبپذیری خصوصی (SCA) نشان داد که این پارامتر برای تمام صفات بررسی شده معنیدار میباشد. نسبت بیکر برای NDF، NFR، NFP، NDM و FWI بالا بود و GCA بیشتر از SCA بود که نشاندهنده سهم هر دو اثر ژن افزایشی و غیرافزایشی بود. نسبت بیکر برای FL (0.44)، RT (0.42) و SC (0.2) نشان دهنده غلبه اثرات ژن غیرافزایشی و برای FEW (0.56)، RW (0.51) و FLW (0.57) برابری اثرات ژنی افزایشی و غیرافزودنی را در کنترل این اثرات نشان داد. والدین P4 و P2 به ترتیب بهترین GCA را برای تعداد میوه در بوته و کیفیت میوه نشان دادند. بر اساس نتایج SCA، تلاقی های P2×P4 و P1×P2 به ترتیب برای تولید هیبریدهای پرمحصول و با کیفیت بالا توصیه می شود. | ||
کلیدواژهها [English] | ||
اثرات ژن, دی آلل, قابلیت ترکیب پذیری عمومی, هیبرید | ||
مراجع | ||
Ahmed M. E. M., Lithy Y. T. E., and Ebrahim N. E. S. (2012). Heterosis and combining ability for yield and some fruit traits in watermelon. In: Minia International Conference for Agriculture and Irrigation, Minia, Egypt, 26-29. Bahari M., Rafii M. Y., Saleh G. B., and Latif M. A. (2012). Combining ability analysis in complete diallel cross of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). The Scientific World Journal, 2012: 543158. DOI: https://doi.org/10.1100/2012/543158. Baker R. J. (1978). Issues in diallel analysis. Crop Science, 18(4): 533-536. Benin G., Beche E., Lemes da Silva C., Milioli A. S., and Tonatto M. (2017). Identifying superior spring wheat genotypes through diallel approaches. Australian Journal of Crop Science, 11(1): 112-117. Biabani A., Rafii M. Y., Saleh G., Shabanimofrad M., and Latif M. A. (2012). Combining ability analysis and evaluation of heterosis in Jatropha curcas L. F1 hybrids. Australian Journal of Crop Science, 6(7): 1030-1036. Chakrabarty S. K., Basu S., and Schipprach W. (2023). Hybrid seed production technology. In: Dadlani M., and Yadava D. K. (Eds.), Seed science and technology (pp. 173-212), Springer, Singapore. DOI: https://doi.org/10.1007/978-981-19-5888-5_9. Dane F., Liu J., and Zhang C. (2007). Phylogeography of the bitter apple, Citrullus colocynthis. Genetics Resources and Crop Evolution, 54(3): 327-336. Dou J., Lu X., Ali A., Zhao Sh., Zhang L., He N., and Liu W. (2018). Genetic mapping reveals a marker for yellow skin in watermelon (Citrullus lanatus L.). PLOS One, 13(1): e0191144. Dutta S. K., Nimmakayala P., and Reddy U. K. (2023). Watermelon: Advances in genetics of fruit qualitative traits. In: Kole C. (Ed.), Compendium of crop genome designing for nutraceuticals (pp. 1-13), Springer, Singapore. DOI: https://doi.org/10.1007/978-981-19-3627-2_36-1. EI-Meghawry A., Kamooh A. A., and Abd E. S. M. (2002). Combining ability studies in watermelon (Citrullus lanatus). Journal of Plant Production, 27(2): 1201-1211. Esmaeili M., Soltani F., Bihamta M. R., and Javan Nikkhah M. (2022). Estimation of yield combining ability and fruit-related traits using diallel analysis in melon (Cucumis melo L.). International Journal of Horticultural Science and Technology, 9(1): 131-142. FAO. (2022). Production quantities of watermelons by country. http://www.fao.org/faostat/en/#data/QC/visualize. Fasahat P., Rajabi A., Rad J. M., and Derera J. (2016). Principles and utilization of combining ability in plant breeding. Biometrics and Biostatistics International Journal, 4(1): 1-22. Feyzian E., Dehghani H., Rezai A. M., and Jalali-Javaran M. (2009). Diallel cross analysis for maturity and yield-related traits in melon (Cucumis melo L.). Euphytica, 168: 215-223. Ghorbanian S., Olfati J. A., and Rabiei B. (2023). General and specific combining ability for yield-related traits in watermelon. Journal of Plant Physiology and Breeding, 13(2): 161-168. Griffing B. (1956). Concepts of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Sciences, 9(4): 463-493. Gusmini G. (2003). Watermelon (Citrullus lanatus) breeding handbook. USA: North Carolina State University, pp. 180. Gusmini G., Schultheis J. R., and Wehner T. C. (2004). Rind thickness of watermelon cultivar for use in pickle production. Horticultural Technology, 14: 540-545. Gvozdanovic-Varga J., Gvozdanovic-Vasic D., and Cervenski J. (2004). Review of a collection of experimental watermelon hybrids. In: Proceedings VIII Symposium Biotehnology and Agroindustry, Velika Plana, November 01-03, 226-234. Gvozdanovic-Varga J., Vasic M., Milic D., and Cervenski J. (2011). Diallel crosses analysis for fruit traits in watermelon. Genetika, 43(2): 163-174. Hallauer A. R. (2007). History, contribution, and future of quantitative genetics in plant breeding: Lessons from maize. Crop Science, 47(1): 4-19. Mansy A., Madry W., and Zurawicz E. (2005). Combining ability analysis of fruit yield and fruit quality in ever-bearing strawberry cultivars using incomplete diallel cross design. Journal of Fruit and Ornamental Plant Research, 13(1): 5-17. Muraya M. M., Ndirangu C. M., and Omolo E. O. (2006). Heterosis and combining ability in diallel crosses involving maize (Zea mays) S1 lines. Australian Journal of Experimental Agriculture, 46(4): 387-394. Naroui Rad M. R., Bakhshi B., Moradgholi A., and Rafezi R. (2023). Heritability and combining ability in half diallel cross of melon (Cucumis melo L.). Journal of Horticulture and Postharvest Research, 6(2): 181-192. Pagliosa E. S., Benin G., Beche E., Lemes da Silva C., Milioli A. S., and Tonatto M. (2017). Identifying superior spring wheat genotypes through diallel approaches. Australian Journal of Crop Science, 11(1): 112-117. Rainey K. M., and Griffiths P. D. (2005). Diallel analysis of yield components of snap beans exposed to two temperature stress environments. Euphytica, 142(1): 43-53. Rakesh K. (2011). Inheritance of fruit yield and other horticulturally important traits in watermelon (Citrullus lanatus Thunb.). Horticulture Science, 182(2): 141-144. Santos R. M., Melo N. F., Fonseca M. A. J. F., and Queiroz M. A. A. (2017). Combining ability of forage watermelon (Citrullus lanatus var. citroides) germplasm. Revista Caatinga Mossoró, 30: 768-775. Singh D. P., Singh A. K., and Singh A. (2021). Plant breeding and cultivar development. In: Chapter 9 - Mass and pure line selection (pp. 211-222), Elsevier. DOI: https://doi.org/10.1016/B978-0-12-817563-7.00018-0. Singh A., Singh D., and Singh R. (2022). Assessment of combining ability of watermelon germplasm derived from diverse geographic origin for yield and quality traits. Genetika, 54(2): 959-976. DOI: https://doi.org/10.2298/gensr2202959s. Yang T., Amanullah S., Li S., Cheng R., Zhang C., et al. (2023). Molecular mapping of putative genomic regions controlling fruit and seed morphology of watermelon. International Journal of Molecular Sciences, 24(21): 15755. Zhang Y., and Kang M. S. (1997). DIALLEL-SAS: A SAS program for Griffing’s diallel analyses. Agronomy Journal, 89(1): 176-182. Zhang Y., Kang M. S., and Magari R. (1996). A diallel analysis of ear moisture loss rate in maize. Crop Science, 36(4): 1140-1144. Zheng Y. P. (2024). Global characteristics and trends of researches on watermelon: Based on bibliometric and visualized analysis. Heliyon, 10(5): e26824. | ||
آمار تعداد مشاهده مقاله: 77 تعداد دریافت فایل اصل مقاله: 17 |