تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,956 |
تعداد دریافت فایل اصل مقاله | 2,845,050 |
Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 1، دوره 6، شماره 1 - شماره پیاپی 11، تیر 2017، صفحه 1-7 اصل مقاله (986.81 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2017.1368 | ||
نویسندگان | ||
Sahar Faraji* 1؛ Hamid Najafi-Zarrini1؛ Seyyed Hamidreza Hashemi-Petroudi2؛ Gholam Ali Ranjbar1 | ||
1Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), P.O. Box: 48147-78695, Sari, Iran. | ||
2Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran. | ||
تاریخ دریافت: 21 خرداد 1397، تاریخ پذیرش: 21 خرداد 1397 | ||
چکیده | ||
Abiotic stresses such as salinity influence agricultural production. Plants generally respond to stimulus conditions in a complex manner involving many genes and proteins. In the evolution process, halophyte plant Aeluropus littoralis has been proven to have abiotic stress-tolerance capacity. A. littoralis is a salt-resistant halophyte providing a wealthy genetic resource for developing salinity tolerance in crop plants. In the present study, the expression of four candidate ESTs including PKL, 5PTase, NUC-L2 and GLYI genes were analyzed in root and shoot tissues by quantitative Real-Time PCR in multiple time points under 600 mM NaCl stress and recovery conditions . Al5PTase gene showed the highest significant up-regulation in shoot and root tissues. However, a significant down-regulation was found for AlGLY gene in root tissues. Furthermore, we found the unique up-regulations for AlPKL and AlNUC-L2 genes expression magnitudes in root tissues under recovery conditions. These results may provide useful information for further understanding of the role of A. littoralis genes and their regulatory pathways, revealing important genetic resources for crop improvement. | ||
کلیدواژهها | ||
Aeluropus littoralis؛ Genes expres-sions profiling؛ Real-Time PCR؛ Stress-responsive mechanisms | ||
عنوان مقاله [English] | ||
بررسی و مقایسه پروفایل بیانی چهار ژن پاسخگو به تنش شوری در گیاه آلوروپوس لیتورالیس | ||
نویسندگان [English] | ||
سحر فرجی1؛ حمید نجفی زرینی1؛ سید حمیدرضا هاشمی پطرودی2؛ غلامعلی رنجبر1 | ||
1گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده علوم زراعی، ساری، ایران، کدپستی: 78695-48147. | ||
2پژوهشکده ژنتیک و بیوتکنولوژی کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
چکیده [English] | ||
تنشهای محیطی، از جمله شوری، آثاری مختلف بر تولیدات کشاورزی دارند. بطورکلی، گیاهان به شیوهای پیچیده و با استفاده از تحریک بیان ژنها و پروتئینهای مختلف به شرایط محرک محیطی پاسخ میدهند. طی فرآیند تکامل، توانایی ایجاد مقاومت به تنشهای غیر زنده در گیاه هالوفیت Aeluropus littoralis به اثبات رسیده است. A. littoralis بهدلیل مقاوم بودن در برابر تنش شوری، منبع ژنتیکی بسیار ارزشمندی برای شناسایی و کاربرد ژنهای عامل مقاومت است و از آنها برای تولید گیاهان مقاوم به تنش استفاده میشود. از این رو، در جستار حاضر، میزان بیان چهار ESTs برگزیده-که مربوط به ژنهای PKL، 5PTase، NUC-L2 و GLY I است- در پاسخ به تنش 600 mM NaCl و شرایط ریکاوری پس از حذف تنش، در بافتهای مختلف برگ و ریشة گیاه آلوروپوس، با استفاده از تکنیک quantitative Real-Time PCR ارزیابی شد. مطابق نتایج، ژن Al5PTase بیشترین میزان افزایش بیان را در هر دو بافت برگ و ریشه و در پاسخ به هر دو تیمار شوری و ریکاوری آشکار کرد. در بین ژنهای منتخب، کاهش بیان قابل توجهی برای ژن AlGLY I در بافت ریشه رخ داد. علاوه بر این، افزایش بسیار قابل توجهی در میزان رونویسی از ژنهای AlPKL و AlNUC-L2 در نمونههای حاصل از ریکاوری بافت ریشه نمایان شد. نتایج حاصل احتمالا اطلاعاتی ارزشمند را برای درک هرچه بیشتر نقش ژنهای گیاه A. littoralis و آگاهی از مسیرهای تنظیمی آنها فراهم میآورد، درنتیجه منبع ژنتیکی مهمی برای بهبود ژنتیکی سایر گیاهان زراعی معرفی مینماید | ||
کلیدواژهها [English] | ||
Aeluropus littoralis, بررسی بیان ژن, مکانیسم های پاسخ به تنش, Real-Time PCR | ||
مراجع | ||
Aichinger E., Villar C. B., Farrona S., Reyes J. C., Hennig L., and Köhler C. (2009). CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genetics, 5: e1000605. Barhoumi Z., Djebali W., Chaïbi W., Abdelly C., and Smaoui A. (2007). Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. Journal of Plant Research, 120: 529-537. DeWald D. B., Torabinejad J., Jones C. A., Shope J. C., Cangelosi A. R., Thompson J. E., Prestwich G. D., and Hama H. (2001). Rapid accumulation of phosphatidylinositol 4,5 bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt stressed Arabidopsis. Plant Physiology, 126: 759-769. Dlakić M. (2000). Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends in Biochemical Sciences, 25: 272-273. Dreyfuss G., Swanson M. S., and Piñol-Roma S. (1988). Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends in Biochemical Sciences, 13: 86-91. Durut N., Abou-Ellail M., Pontvianne F., Das S., Kojima H., Ukai S., deBures A., Comella P., Nidelet S., Rialle S., Merret R., Echeverria M., Bouvet P., Nakamura K., and Sáez-Vásquez J. A. (2014). Duplicated nucleolin gene with antagonistic activity is required for chromatin organization of silent 45S rDNA in Arabidopsis. Plant Cell, 26: 1330-1344. Eisen J. A., Sweder K. S., and Hanawalt P. C. (1995). Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Research, 25: 2715-2723. Flowers T. J., and Colmer T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179: 945-963. Furuta K., Kubo M., Sano K., Demura T., Fukuda H., Liu Y. G., Shibata D., and Kakimoto T. (2011). The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis Calli. Plant and Cell Physiology, 52: 618-628. Hoagland D. R., and Arnon D. I. (1950). The water-culture method for growing plants without soil. Circular, California Agricultural Experiment Station, California, 1-32. Hu Y., Lai Y., and Zhu D. (2014). Transcription regulation by CHD proteins to control plant development. Frontiers in Plant Science, 5: 223. Jacobs S. A., and Khorasanizadeh S. (2002). Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science, 295: 2080-2083. Jefferson A. B., Auethavekiat V., Pot D. A., Williams L. T., and Majerus P. W. (1997). Signaling inositol polyphosphate-5-phosphatase: characterization of activity and effect of GRB2 association. Journal of Biological Chemistry, 272: 5983-5988. Kawasaki S., Borchert C., and Deyholos M. (2001). Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13: 889-905. Kaye Y., Golani Y., Singer Y., Leshem Y., Cohen G., Ercetin M., Gillaspy G., and Levine A. (2011). Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant Physiology, 157: 229-241. Larionov A., Krause A., and Miller W. (2005). A standard curve based method for relative Real-Time PCR data processing. BMC Bioinformatics, 6: 62. Lin F., Xu J., Shi J., Li H., and Li B. (2010). Molecular cloning and characterization of a novel glyoxalase I gene TaGLY I in wheat (Triticumaestivum L.). Molecular Biology Reports, 37: 729-735. Livak K. J., and Schmittgen T. D. (2001). Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-∆∆CT method. Methods, 25: 402-408. Modarresi M., Nematzadeh G. A., and Moradian F. (2013). Salinity response pattern and isolation of catalase gene from halophyte plant Aeluropus littoralis. Photosynthetica, 51: 621-629. Moller I. S., and Tester M. (2007). Salinity tolerance of Arabidopsis: a good model for cereals. Trends in Plant Science, 12: 534-540. Munnik T., and Vermeer J. E. (2010). Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell and Environment, 33: 655-669. Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. Mustafiz A., Ghosh A., Tripathi A. K., Kaur C., Ganguly A. K., Bhavesh N. S., Tripathi J. K., Pareek A., Sopory S. K., and Singla-Pareek S. L. (2014). A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant Journal, 78: 951-963. Ooms L. M., McColl B. K., Wiradjaja F., Wijayaratnam A. P., Gleeson P., Gething M. J., Sambrook J., and Mitchell C. A. (2000). The yeast inositol polyphosphate 5-phosphatases inp52p and inp53p translocate to actin patches following hyperosmotic stress: mechanism for regulating phosphatidylinositol 4,5-bisphosphate at plasma membrane invaginations. Molecular and Cellular Biology, 20: 9376-9390. Perruc E., Kinoshita N., and Lopez-Molina L. (2007). The role of chromatin remodeling factor PKL inbalancing osmotic stress responses during Arabidopsis seed germination. Plant Journal, 52: 927-936. Pontvianne F., Matía I., Douet J., Tourmente S., Medina F. J., Echeverria M., and Sáez-Vásquez J. (2007). Characterization of AtNUC-L1 reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis. Molecular Biology of the Cell, 18: 369-379. Rychlik W. (2007). OLIGO 7 primer analysis software, In: Yuryev A. (eds) PCR Primer Design. Methods in Molecular Biology, 402: 35-59. Saad R. B., Zouari N., Ramdhan W. B., Azaza J., Meynard D., Guiderdoni E., and Hassairi A. (2010). Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Molecular Biology, 72: 171-190. Schuettengruber B., Chourrout D., Vervoort M., Leblanc B. and Cavalli G. (2007). Genome regulation by polycomb and trithorax proteins. Cell, 128: 735-745. Sripinyowanicha S., Chamnanmanoontham N., Udomchalothorna T., Maneeprasopsuk S., Santawee P., Buaboocha T., Que L. J., Gue H., and Chadchawan S. (2013). Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress. Plant Science, 213: 67-78. Stępiński D. (2012). Nucleolin level in plant root meristematic cells under chilling stress and recovery. Micron, 43: 870-875. Veena V. S., Reddy S. K., and Sopory S. K. (1999). Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant Journal, 17: 385-395. Verdel A., Jia S., Gerber S., Sugiyama T., GygiS., Grewal S. I., and Moazed D. (2004). RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 303: 672-676. Xue H. W., Chen X., and Mei Y. (2009). Function and regulation of phospholipid signaling in plants. Biochemical Journal, 421: 145-156. | ||
آمار تعداد مشاهده مقاله: 422 تعداد دریافت فایل اصل مقاله: 365 |