تعداد نشریات | 19 |
تعداد شمارهها | 370 |
تعداد مقالات | 3,043 |
تعداد مشاهده مقاله | 4,112,558 |
تعداد دریافت فایل اصل مقاله | 2,743,363 |
Study of new NBS-LRR genes analogues in cucurbits native types in Iran | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 2، دوره 6، شماره 1 - شماره پیاپی 11، تیر 2017، صفحه 8-15 اصل مقاله (485.94 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2017.1369 | ||
نویسندگان | ||
Fatemeh Gharaei1، 2؛ Maryam Ghayeb Zamharir* 1 | ||
1Department of Plant Diseases, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P. O. Box: 19395-1454, Tehran, Iran. | ||
2Science and Research Branch of Islamic Azad University, Tehran, Iran. | ||
تاریخ دریافت: 21 خرداد 1397، تاریخ پذیرش: 21 خرداد 1397 | ||
چکیده | ||
Nucleotide binding site leucine-rich repeats (NBS-LRR) accounting for the main disease resistance proteins play an important role in plant defense against pathogen attack. The current study aimed to identify new NBS-LRR gene members in native types of cucurbit species in Iran. Accordingly, DNAs of melon, cucumber and cantaloupe native types to Iran were identified using three primer pairs. PCR products of the expected size were generated and the obtained DNA was cloned using the pGEM-T. BLASTN algorithms were used to compare the insert sequences with sequences available at the Entrez nucleotide and protein. Phylogenetic analyses were conducted using the MEGA software. The results analysis suggests that cucurbit species native types’ genome contain new NBS_LRR resistance gene analogues against cucurbit pathogens. These resistance gene analogues are composed of genes related to both coiled-coil (CC) and toll-interleukin-receptor homology (TIR) domain containing NBS-LRR R-genes. Phylogenetic analysis of these genes shows that they include NBS-LRRs derived from a recent common ancestor. This study provides an insight into the evolution of NBS-LRR genes in the Cucurbit native type species genomes that are resistance analogues against cucurbit bacterial blight pathogen and tomato mosaic virus. | ||
کلیدواژهها | ||
Cucurbits species؛ Iran؛ Native types؛ NBS-LRR | ||
عنوان مقاله [English] | ||
مطالعه آنالوگهای جدید مقاومت متعلق به NBS-LRR در کدوئیان بومی ایران | ||
نویسندگان [English] | ||
فاطمه قرائی1، 2؛ مریم غایب زمهریر1 | ||
1آزمایشگاه پروکاریوت شناسی، بخش تحقیقات بیماریهای گیاهی، موسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران، کدپستی: 1454-19395. | دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران. | ||
2آزمایشگاه پروکاریوت شناسی، بخش تحقیقات بیماریهای گیاهی، موسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران، کدپستی: 1454-19395. | دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران. | ||
چکیده [English] | ||
NBS_LRR از اصلیترین پروتئینهای مقاوم به بیماری در گیاهان هستند که نقشی مهم در دفاع گیاهان بر ضد پاتوژنها برعهده دارند. هدف از این پژوهش، تشخیص اعضای جدید ژنهای خانوادة NBS-LRR در گونههای کدوئیان بومی ایران است. برای این منظور، DNAs از برگ ارقام بومی خربزه، طالبی و خیار ایران استخراج و با استفاده از سه ترکیب پرایمری تکثیر شدند و فرآوردههای حاصل از واکنش در وکتور pGEM-T همانندسازی شدند. برای مقایسة توالیهای حاصل از این واکنش با توالیها و پروتئینهای موجود در بانک ژن، از نرم افزار BLASTN استفاده شد و آنالیزهای فیلوژنتیکی با استفاده از نرم افزار MEGA انجام شد. نتایج آنالیزها نشان میدهد که ژنوم گونههای کدوئیان بومی، حاوی آنالوگهای جدید مقاوم به بیماری از خانواده NBS_LRR هستند. این آنالوگهای ژن مقاوم به بیماری در هر دو زیرخانواده coiled-coil (CC) وtoll-interleukin-receptor homology (TIR) شناسایی شدند. بررسی فیلوژنتیک این ژنها نشان داد که آنالوگهای مقاومت از ریشه یا تباری مشترک نشأت گرفتهاند. این جستار، اطلاعات جدید برای تکمیل مطالعة ژنهای مقاوم به بیماری را در خانوادة BS-LRR فراهم نموده است که میتواند در مقابل بیماری بلایت باکتریایی کدوئیان و ویروس موزائیک گوجه فرنگی مقاومت ایجاد کند. | ||
کلیدواژهها [English] | ||
ایران, بومی, گونه های کدوئیان, NBS-LRR | ||
مراجع | ||
Altschul S. F., Gish W., Miller W., Meyers E. W., and Lipman D. J. (1990). Basic linear alignment search tool. Molecular Biology, 215: 403-410. Bhavani S. G., Jennifer L. M., Sarah S. R., and Dilram R. S. (2002). Isolation, sequence analysis and linkage mapping of resistance-gene analogs in cowpea (Vigna unguiculata L. Walp.). Euphytica, 126: 365-377. Bouktila D., Habachi-Houimli Y., Khalfallah Y., and Mezghani-Khemakhem M. (2014). Characterization of novel wheat NBS domain containing sequences and their utilization, in silico, for genome scale R gene mining. Molocular Genetics and Genomics, 289: 599-613. Chakravarty H. L. (1946). Studies on Indian Cucurbitaceae with special remarks on distribution and uses of economic species. Indian Journal of Agricultural Science, 16: 1–89. Chakravarty H. L. (1959). Monograph on Indian Cucurbitaceae. Rec. Bot. Surv. India 17, 1–234. Chen J.F., Zhuang F.Y., Liu X.A. and Qian C.T. (2004). Reciprocal differences of morphological and DNA characters in interspecific hybridization in Cucumis. Canadian Journal of Botany, 82: 16–21. Deng Z., Huang S., Ling P., Chen C., Yu C., Weber C. A. Moore G. A., and Gmitter F. G. (2000). Cloning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theoretical and Applied Genetics, 101: 814-822. Dillehay T. D., Rossen J., Andres T. C., and Williams D. E. (2007). Preceramic adoption of peanut, squash, and cotton in Northern Peru. Science, 316: 1890–1893. Djebbi S., Bouktila D., Makni H., Makni M., and Mezghani-Khemakhem M. (2015) Identification and characterization of novel NBS-LRR resistance gene analogues from the pea. Genetic and molecular research, 14(2): 6419-6428. Doyle J. J., and Doyle J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12:13–15. Dracatos P. M., Cogan N. O. I., Sawbridge T. I., Gendall A. R., Smith K. F., and Spangenberg G. C. (2009). Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biology, 9: 62. Ellis J., and Jones D. (1998). Structure and function of proteins controlling strainspecific pathogen resistance in plant. Current Opinion in Plant Biology, 1: 288–293. Ghebretinsae A., and Barber J. C. (2006). Phylogenetic relationships among species of Cucumis and Cucumella (Cucurbitaceae): evidence from ITS, rpl16 and trnS-G sequences. Available from: 2006 URL: www.2006.botanyconference.org/engine/ search/index.php?funcZdetail&aidZ498. Glazebrook J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43: 205–227. Helm M. A., and Hemleben V. (1997). Characterization of a new prominent satellite DNA of Cucumis metuliferus and differential distribution of satellite DNA in cultivated and wild species of Cucumis and in related genera of Cucurbitaceae. Euphytica, 94: 219–226. Huang L., Brooks S., Li W., Fellers J., Nelson J. C., and Gill B. (2009). Evolution of new disease specificity at a simple resistance locus in a crop-weed complex: Reconstitution of the Lr21gene in wheat. Genetics, 182: 595–602 Kanazin V., Marek L. F., and Shoemaker R. C. (1996). Resistance gene analogs are conserved and clustered in soybean. Proceedings of the National Academy of Sciences, 93: 11746-11750. Levi A., Thomas C. E., Simmons A. M., and Thies J. A. (2005). Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and Cucumis species than with Praecitrullus fistulosus (Stocks) Pangalo. Genetic Resource and Crop Evolotion, 52: 465–472. Meyers B. C., Kaushik S., and Nandety R. S. (2005). Evolving disease resistance genes. Current Opinion in Plant Biology, 8: 129–134 Nair R. A., and Thomas G. (2007). Isolation, characterization and expression studies of resistance gene candidates (RGCs) from zingiber spp. Theoretical and Applied Genetics, 116: 123–134. Palmer M. J., and Williams P. H. (1981). A seedling evaluation method for Fusarium wilt of cucumber incited by Fusarium oxysporum f.sp. cucumerinum. (Abstr.). Phytopathology, 71: 247. Palomino C., Satovic Z., Cubero J. I., and Torres A. M. (2006). Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome, 49: 1227-1237. Pan Q. L., Liu Y. S., Budai-Hadrian O., Sela M., Carmel-Goren L., Zamir D., and Fluhr R. (2000). Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics, 155: 309–322. Renner S. S., and Schaefer H. (2008). Phylogenetics of Cucumis (Cucurbitaceae) as understood in 2008. In Proceeding IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae (ed. M. Pitrat), 53–58. Sanjur O. I., Piperno D. R., Andres T. C., and Wessel-Beaver L. (2002). Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences, 99:535–540. Schaefer H., Heibl C., and Renner S. S. (2009) Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proceedings of the Royal Society B, 76: 843–851. Sikdar B., Bhattacharya M., Mukherjee A., Banerjee A., Ghosh E., Ghosh B., and Roy S. C. (2010). Genetic diversity in important members of Cucurbitaceae using isozyme, RAPD and ISSR markers. Biologia Plantarum, 54: 135–140. Smith B. D. (1997). The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science, 276: 932–934. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., and Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molocualr Biology Evolution, 28: 2731–2739. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., and Higgins D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 4876–4882. Vanlerberghe G. C. (2013). Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants. Internatinal Journal of Mollecular Science, 14: 6805-6847. Wan H., Yuan W., Bo K., Shen J., Pang X., and Chen J. (2013). Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics, 14:109. Wan H. J., and Chen J. F. (2010). Characterization of NBS-LRR resistance gene analogs from a high resistance to downy mildew introgression line from Cucumis hystrix x C. sativus. Acta Horticulture, 871: 573–578. Wan H. J., Zhao G., Ahmed A. M., Qiao C. T., and Chen J. F. (2010). Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biology, 10: 186. Wyszogrodzka A. J., Williams P. H., and Peterson C. E. (1987). Multiple-pathogen inoculation of cucumber (Cucumis sativus) seedlings. Plant Disease, 71: 275–280. Yaish M. W. F., Saenz De Miera L. E., and Perez De La Vega M. (2004). Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome, 47: 650-659. Zhang L. Y., Chen R. G., and Zhang J. H. (2008). Cloning and analysis of resistance gene analogs from pepper (Capsicum annuum L.). Agricultural Sciences in China, 41(1): 169-175.
| ||
آمار تعداد مشاهده مقاله: 529 تعداد دریافت فایل اصل مقاله: 391 |