تعداد نشریات | 20 |
تعداد شمارهها | 370 |
تعداد مقالات | 3,040 |
تعداد مشاهده مقاله | 4,088,307 |
تعداد دریافت فایل اصل مقاله | 2,723,657 |
Transient expression of green fluorescent protein in radish (Raphanus sativus) using a turnip mosaic virus based vector | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 3، دوره 7، شماره 1 - شماره پیاپی 13، تیر 2018، صفحه 24-30 اصل مقاله (793.62 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2019.9206.1205 | ||
نویسندگان | ||
Maryam Abdoli-Nasab* ؛ nazila gharibi | ||
Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, P. O. Box: 76315-117, Kerman, Iran | ||
تاریخ دریافت: 26 مرداد 1397، تاریخ بازنگری: 19 اسفند 1397، تاریخ پذیرش: 24 دی 1397 | ||
چکیده | ||
It is possible to use transgenic plants, as bioreactors, for the production of recombinant inexpensive chemicals and drug components. Transient gene expression is an appropriate alternative to stable transformation because it allows an inexpensive and rapid method for expression of recombinant proteins in plant tissues. In recent years, plant viral vectors have been increasingly developed as successful biotechnological tools for the expression of a wide range of foreign proteins in plants. Plant viruses-based vectors are useful because of the autonomous replication and the high level of gene expression in a short time. Here, we have used a vector derived from an infectious turnip mosaic virus (TuMV) for transient expression of the jellyfish green fluorescent protein (GFP), as a model heterologous protein, in radish plant. The GFP ORF was inserted between NIb and CP sites under control of CAMV35S promoter. The leaves were inoculated using surface scratch by carborundum and harvested 14 days after inoculation for analysis. The visualization of GFP fluorescence in leaf disks from inoculated plants using fluorescence microscopy demonstrated gene transformation and systemic infection. Expression of the desired protein were confirmed by RT-PCR, SDS-PAGE and Dot blotting analysis. The quantitative values of GFP in different inoculated leaves were compared by ELISA assay using an anti-GFP antibody. The results showed high level of expression of GFP protein in leaves of inoculated plants compared with wild type. The results demonstrated that the TuMV-based vector has high efficiency for the expression of the foreign protein in the radish plant. This is the first examination of TuMV-based vector in radish. | ||
کلیدواژهها | ||
GFP؛ Radish؛ Transient expression؛ Viral vector | ||
عنوان مقاله [English] | ||
بیان موقت پروتئین فلورسنت سبز در تربچه (Raphanus sativus) با استفاده از وکتور بر پایة ویروس موزاییک شلغم | ||
نویسندگان [English] | ||
مریم عبدلی نسب؛ نازیلا غریبی | ||
گروه بیوتکنولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران، کدپستی: 711-76315 | ||
چکیده [English] | ||
از گیاهان تراریخت میتوان به جای بیوراکتور برای تولید ارزان مواد شیمیایی و دارویی استفاده کرد. در سالهای اخیر، ناقلان ویروسی به طور گسترده در نقش ابزار بیوتکنولوژی موفق برای بیان طیفی گسترده از پروتئینهای نوترکیب در گیاهان توسعهیافته عمل میکنند. مزیت کاربرد ناقلان ویروسی به سبب نظام همانندسازی خودکار، افزایش سطح بیان ژن در زمانی کوتاه است. جُستار پیشرو، نخستین مطالعة ناقل بر پایة TuMV در گیاه تربچه به شمار میرود که از ناقل بر پایة ویروس موزاییک شلغم (TuMV)، برای تبیین موقت پروتئین فلورسنت سبز (GFP) در گیاه تربچه استفاده کردهاست. برگها به صورت مکانیکی به کمک خراش با کربوراندوم تلقیح، پس از گذشت 14 روز برای ارزیابی برداشت شدند و انتقال و بیان پروتئین موردنظر با استفاده از میکروسکوپ فلورسنت، RT-PCR، SDS-PAGE و دات بلات تأیید گردید. آنالیز الایزا از بیان فراوانی پروتئین GFP در گیاهان تلقیح شده نسبت به فرم وحشی حکایت دارد. نتایج پژوهش نشان میدهد که ناقل بر پایة TuMV کارایی بیشتری برای بیان پروتئین خارجی در گیاه تربچه دارد. | ||
کلیدواژهها [English] | ||
بیان موقت, ناقل ویروسی, GFP, تربچه | ||
مراجع | ||
Abdoli Nasab M., Jalali-Javaran M., Cusido R. M., Palazon J., Baghizadeh A., and Alizadeh H. (2013). Expression of the truncated tissue plasminogen activator (K2S) in tobacco chloroplast. Molecular Biology Reports, 40: 5749-58.
Adhab M. A., and AL ani R. (2013). Characterization of an Isolate of Cucumber mosaic cucumovirus from Radish (Raphanus sativus) in Iraq. Plant Pathology Journal, 12: 115-119
Arazi T., Slutsky S. G., Shiboleth Y. M., Wang Y., Rubinstein M., Barak S., Yang J., and Gal-On A. (2001). Engineering zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. Journal of Biotechnology, 87: 67-82.
Beauchemin C., Bougie V., and Laliberte J. F. (2005). Simultaneous production of two foreign proteins from a potyvirus-based vector. Virus Reserch, 112: 1-8.
Beauchemin C., Boutet N., and Laliberte J. F. (2007). Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. Journal of Virology, 81: 775-782.
Bedoya L. C., Martinez F., Orzaez D., and Daros, J. A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158: 1130–1138.
Beihaghi M., Marashia H., Bagheri A., and Sankian M. (2018). Transient expression of CCL21as recombinant protein in tomato. Biotechnology Reports, 17: 10–15.
Bellucci M., De Marchis F., Mannucci R., and Arcioni S. (2003). Jellyfish green fluorescent protein as a useful reporter for transient expression and stable transformation in Medicago sativa L. Plant Cell Reports, 22: 328-37.
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
Bucher E., Sijen T., De Haan P., Goldbach R., and Prins M. (2003). Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of Virology, 77: 1329-1336.
Chen C. C., Chen T. C., Raja J. A., Chang C. A., Chen L. W., Lin S. S., and Yeh S. D. (2007). Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Reserch, 130: 210-27.
Cho M. A., Min S. R., Ko S. M., Liu J. R, and Choi P. S. (2008). Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.). Plant Biotechnology, 25: 205–208.
Cotton S., Grangeon, R., Thivierge K., Mathieu I., Ide C., Wei T., Wang A., and Laliberte J. F. (2009). Turnip Mosaic Virus RNA Replication Complex Vesicles Are Mobile, Align with Microfilaments, and Are Each Derived from a Single Viral Genome. Journal of Virology, 83: 10460-71
Egelkrout E., Rajan V., and Howard J. A. (2012). Overproduction of recombinant proteins in Plants. Plant Science, 184: 83-101.
Fernández-Fernández M. R., Mourino M., Rivera J., Rodriguez F., Plana-Duran J., and García J. A. (2001). Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology, 280: 283-291.
German-Retana S., Candresse T., Alias E., Delbos R. P., and Le Gall O. (2000). Effects of green fluorescent protein or beta-glucuronidase tagging on the accumulation and pathogenicity of a resistance-breaking Lettuce mosaic virusisolate in susceptible and resistant lettuce cultivars. Molular Plant-Microbe Interaction, 13: 316-324.
Gleba Y., Klimyuk V., and Marillonnet S. (2007). Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology, 18: 134–141.
Grill L. K., Palmer K. E., and Pogue G. P. (2005). Use of plant viruses for production of plant-derived vaccines. Critical Reviews in Plant Sciences, 24: 309-323.
Habibi-Pirkoohi M., Malekzadeh-Shafaroudi S., Marashi H., Moshtaghi N., Nassiri M., and Zibaee S. (2014). Transient Expression of Foot and Mouth Disease Virus (FMDV) Coat Protein in Tobacco (Nicotiana tabacom) via Agroinfiltration. Iranian Journal of Biotechnology, 12: e1015.
Ivanov K. I., Eskelin K., Lohmus A., and Makinen K. (2014). Molecular and cellular mechanisms underlying potyvirus infection. Journal of General Virology, 95: 1415–1429
Jin T., Wanga J., Zhu X., Xu Y., Zhou X., and Yang L. (2015). A new transient expression system for large-scale production of recombinant proteins in plants based on air-brushing an Agrobacterium suspension. Biotechnology Reports, 6: 36–40.
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
Li X., Zhu T., Yin X., Zhang C., Chen J., Tian Y., and Liu J. (2017). The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China. Virology Journal, 14: 165.
Liu P. F., Wang Y., Ulrich R. G., Simmins C. W., VanderGheynst J. S., Gallo R. L., Huang C. M. (2018). Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves. Journal of Immunology Research, Article ID 3710961:1-9.
Mardanova E. S., Blokhina E. A., Tsybalova L. M., Peyret H., Lomonossoff G. P., and Ravin N. V. (2017). Efficient Transient Expression of Recombinant Proteins in Plants by the Novel pEff Vector Based on the Genome of Potato Virus X. Frontiers in Plant Science, 8: 247.
Mirzaee M., Jalali-Javaran1 M., Moieni A., Zeinali S., Behdani M., Shams-Bakhsh M., and Modarresi M. (2016). Rapid Recombinant Protein Production using a TuMV-Based Vector in Lettuce (Lactuca sativa L.). International Journal of Advanced Biotechnology and Research, 7:118-124.
Papi A., Orlandi M., Bartolini G., Iori R., Paolini M., Ferroni F., Grazia Fumo M., Pedulli G. F., and Valgimigli L. (2008). Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. Journal of Agricultural and Food Chemistry, 56: 875–883. .
Park B. J., Liu Z., Kanno A., and Kameya T. (2005). Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. Napus. Plant Cell Reports, 24: 494-500.
Pogue G. P., Lindbo J. A., Garger S. J., and Fitzmaurich W. P. (2002). Making an ally from an enemy: plant virology and the new agriculture. Annual Review of Phytopathology, 40: 45-74.
Qu F., and Morris T. J. (2005). Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Letter, 579: 5958-5964.
Ravindra B., Teixeira da Silva J. A., and Nataraja K. (2008). Green fluorescent protein in the genetic transformation of plants. Transgenic Plant Journal, 2: 86-109.
Sanchez F., Martinez-Herrera D., Aguilar I., and Ponz F. (1998). Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Research, 55: 207-19.
Shah K. H, Almaghrabi B., and Bohlmann H. (2013). Comparison of Expression Vectors for Transient Expression of Recombinant Proteins in Plants. Plant Molecular Biology Reporter, 31: 1529–1538.
Thuenemann E. C., Lenzi P., Love A. J., Taliansky M., Becares M., Zuniga S., Enjuanes L., Zahmanova G. G., Minkov I. N., Matic S., Noris E., Meyers A., Hattingh A., Rybicki E. P., Kiselev O. I., Ravin N. V., Eldarov M. A., Skryabin K. G., and Lomonossoff G. P. (2013). The use of transient expression systems for the rapid production of virus-like particles in plants. Current Pharmaceutical Design, 19: 5564–5573.
Tourino A., Sánchez F., Fereres A., and Ponz F. (2008). High expression of foreign proteins from a biosafe viral vector derived from Turnip mosaic virus. Spanish Journal of Agricultural Research, 6: 48-58.
Tuo D., Shen W., Yan P., Li X., and Zhou P. (2015). Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning. Viruses, 7(12): 6241–6250.
Voinnety O., Rivas S., Mestre P., and Baulcombe D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33: 949–956
Wagner B., Fuchs H., Adhami F., Ma Y., Scheiner O., and Breitenede H. (2004). Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana. Methods, 32: 227-34.
Walsh J. A., and Jenner C. E. (2002). Turnip mosaic virus and the quest for durable resistance. Molular Plant Pathology, 13: 289–300.
Yamamoto T., Hoshikawa K., Ezura K., Okazawa R., Fujita S., Takaoka M., Mason H. S., Ezura H., and Miura K. (2018). Improvement of the transient expression system for production of recombinant proteins in plants. Scientific Report, 8: 4755.
Zhu F., Sun Y., Wang Y., Pan H., Wang F., Zhang X., Zhang Y., and Liu J. (2016). Molecular Characterization of the Complete Genome of Three Basal-BR Isolates of Turnip mosaic virus Infecting Raphanus sativus in China. International Journal of Molecular Sciences, 17: 888. | ||
آمار تعداد مشاهده مقاله: 603 تعداد دریافت فایل اصل مقاله: 338 |