تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,141 |
تعداد مشاهده مقاله | 4,269,691 |
تعداد دریافت فایل اصل مقاله | 2,863,727 |
به کارگیری روش SWARA-MOORA به منظور تهیه نقشه پتانسیل معدنی مس در ورقه 1:100000 ابهر، ایران | ||
نشریه مهندسی منابع معدنی | ||
مقاله 1، دوره 5، شماره 2 - شماره پیاپی 16، تیر 1399، صفحه 1-20 اصل مقاله (1.62 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2019.10748.1268 | ||
نویسندگان | ||
یوسف بهرامی1؛ حسین حسنی* 2؛ عباس مقصودی قره بلاغ2 | ||
1دانشجوی دکترا، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران | ||
2دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران | ||
تاریخ دریافت: 01 خرداد 1398، تاریخ بازنگری: 17 خرداد 1398، تاریخ پذیرش: 25 خرداد 1398 | ||
چکیده | ||
اجرای عملیات اکتشاف هزینههای سنگین و زمان طولانی به همراه دارد و این مساله ضرورت مدلسازی پتانسیل معدنی را برای اکتشاف ذخایر معدنی آشکار میسازد. مدلسازی پتانسیل معدنی را میتوان یکی از مسایل تصمیمگیری چندمعیاره دانست؛ چراکه هدف آن تولید نقشههای پیشبینی، بر اساس معیارهای اکتشافی است. بر این اساس، مطالعه حاضر علاوه بر معرفی یک روش ترکیبی جدید به نام "SWARA-MOORA "، به مدلسازی پتانسیل معدنی مس در ورقه یکصدهزار ابهر با تلفیق لایههای مختلف شاهد اکتشافی پرداخته است. برای نیل به این هدف، بر اساس قضاوت کارشناسان، شش لایه شاهد اکتشافی شامل بیهنجاری ژیوشیمیایی مس، نقشه فاصله از واحدهای سنگی آذرین نفوذی و واحدهای ولکانیک، نقشه فاصله از گسل و نقشههای فاصله از دگرسانیهای فیلیک و آرژیلیک بهمنظور مدلسازی پتانسیل معدنی درنظر گرفته شد. برای آمادهسازی نقشههای شاهد اطلاعاتی بهمنظورتلفیق، ابتدا مقادیر این نقشهها با استفاده از تابع لجستیکی به فضای مناسب با دامنه (1-0) منتقل و سپس توسط روش فرکتالی عیار- مساحت، کلاسهبندی شدند. در ادامه، معیارها و زیرمعیارهای مختلف با روش" SAWRA "، وزندهی و جایگزینهای مستخرج از نقشههای شاهد، توسط روش"MOORA"رتبهبندی شدند. در نهایت، مدل نهایی معرف نواحی امیدبخش مس ایجاد و با استفاده از نمودار Prediction-Area (P-A) مورد اعتبارسنجی قرار گرفت. بر اساس این نمودار، قرارگیری نقطه تلاقی منحنیهای نرخ پیشبینی و مساحت اشغال شده بر روی مقدار 81 درصد، چگالی نرمالشده 4/26 را نتیجه داد که توان بالای مدل مذکور را در معرفی نواحی امیدبخش مس ثابت میکند. بنابراین در کنار اعتماد به قابلیت و توانمندیهای روش"SWARA-MOORA"، از این مدل میتوان بهمنظور انجام عملیات اکتشافی دقیقتر در منطقه مورد مطالعه، بهرهگرفت. | ||
کلیدواژهها | ||
ابهر؛ SWARA؛ MOORA؛ فرکتال؛ P-A Plot | ||
عنوان مقاله [English] | ||
Application of the SWARA-MOORA Method for Cu Prospectivity Mapping in Abhar 1:100000 Geological Map, Iran | ||
نویسندگان [English] | ||
Yousef Bahrami1؛ H. Hassani2؛ A. Maghsoudi2 | ||
1Amirkabir University of Technology | ||
2Associate Professor, Dept. of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran | ||
چکیده [English] | ||
Execution of exploration activities is costly and time-consuming, which reveals the necessity of mineral prospectivity mapping (MPM) for identifying highly mineral potential zones. In this regard, the present study introduces a new hybrid method called SWARA-MOORA, through which different evidence layers can be integrated to map Cu highly potential zones in the Abhar area. Thus, based on expert judgments, six evidence layers as targeting criteria was considered. For fulfilling the integration process, the spatial values of predictor maps were initially transformed into a new space ranging [0,1] and then were categorized by C-A fractal-based model to determine thresholds of favorable populations. To generate the overlay prospectivity map pertaining to the mineral deposit of type sought, SWARA method was used to determine the weights of criteria and sub-criteria and MOORA was concerned with order preference of decision alternatives. In order to evaluate the efficiency of SWARA-MOORA overlay prospectivity map, the Predication-Area (P–A) plot along with normalized density (Nd) was used. This predictive map foresees 19% of the study area as prospective areas through which 81% of the known Cu occurrences are ascertained. The relevant Nd is 4.26 that affirms that SWARA-MOORA overlay prospectivity map can be applied efficiently as a target map for subsequent detailed explorations. | ||
کلیدواژهها [English] | ||
Abhar, SWARA, MOORA, Fractal, P-A Plot | ||
مراجع | ||
[1] Carranza, E. J. M. (2008). “Geochemical anomaly and mineral prospectively mapping in GIS”. In of Exploration and Environmental Geochemistry Elsevier, Amsterdam, Netherlands, pp. 368. [2] Bonham Carter, G. F. (1998). “Geographic information systems for geoscientists: modeling with GIS”. Pergamon Press, Oxford, pp. 398. [3] بهرامی، ی.؛ 1397؛"شناسایی مناطق امیدبخش معدنی در ناحیه ابهر با استفاده از تلفیق لایههای اکتشافی در محیط GIS". پایاننامه کارشناسیارشد، دانشگاه صنعتی امیرکبیر، تهران. [4] Bonham-Carter, G. F. (1994). “Geographic information systems for geoscientists-modeling with GIS”. Computer Methods in the Geoscientists, pp. 398. [5] Najafi, A., Karimpour, M. H., and Ghaderi, M. (2014). “Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran”. International Journal of Applied Earth Observation and Geoinformation, 33: 142-154. [6] Yousefi, M., and Carranza, E. J. M. (2015). “Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping”. Computers & Geosciences, 74: 97-109. [7] Ghezelbash, R., Maghsoudi, A., and Daviran, M. (2018a). “Prospectivity modeling of porphyry copper deposits: recognition of efficient mono-and multi-element geochemical signatures in the Varzaghan district, NW Iran”. Acta Geochimica, 1-14. [8] Abedi, M., and Norouzi, G. H. (2012). “Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration”. Journal of Applied Geophysics, 83: 35-45. [9] Porwal, A., Carranza, E. J. M., and Hale, M. (2003). “Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping”. Natural Resources Research, 12(1): 1-25. [10] Abedi, M., Torabi, S. A., and Norouzi, G. H. (2013). “Application of fuzzy-AHP method to integrate geophysical data in a prospect scale, a case study: seridune copper deposit”. Bollettino di Geofisica Teorica ed Applicata, 54(2): 145-164. [11] Agterberg, F. P., Bonham-Carter, G. F., and Wright, D. F. (1990). “Statistical pattern integration for mineral exploration”. In Gaál, G., Merriam, D. F. (Eds.), Computer Applications in Resource Estimation, Pergamon Press, Oxford, 1-21. [12] Brown, W. M., Gedeon, T. D., Groves, D. I., and Barnes, R. G. (2000). “Artificial neural networks: a new method for mineral potential mapping”. Australian Journal of Earth Sciences, 47(4): 757-770. [13] Carranza, E. J. M., and Hale, M. (2002b). “Where porphyry copper deposits are spatiallylocalized? A case study in Benguet province, Philippines”. Natural Resources Research, 11: 45-59. [14] Zuo, R., Zhang, Z., Zhang, D., Carranza, J., and Wang, H. (2016). “Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China”. Ore Geology Reviews, 71: 502-515. [15] Agterberg, F. P., and Bonham-Carter, G. F. (1999). “Logistic regression and weights of evidence modeling in mineral exploration”. In Proceedings of the 28th International Symposium on Applications of Computer in the Mineral Industry (AP- COM), Golden, Colorado, 483-490. [16] Chen, C., Dai, H., Liu, Y., and He, B. (2011). “Mineral Prospectivity Mapping Integrating Multisource Geology Spatial Data Sets and Logistic Regression Modelling”. In Proceedings of IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM), 214-217. [17] Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., and Mamuse, A. (2010a). “Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia”. Ore Geology Reviews, 38: 184-196. [18] Harris, D. P., Zurcher, L., Stanley, M., Marlow, J., and Pan, G. (2003). “A comparative analysis of favourability mappings by weights of evidence probabilistic neuralnetworks, discriminant analysis, and logisticregression”. Natural Resources Research, 12: 241-255. [19] Porwal, A., Carranza, E. J. M., and Hale, M. (2003). “Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province, Western India”. Natural Resources Research, 12: 155-171. [20] Oh, H. J., and Lee, S. (2010). “Application of artificial neural network for gold–silver deposits potential mapping: a case study of Korea”. Natural Resources Research, 19(2): 103-124. [21] Abedi, M., and Norouzi, G. H. (2012). “Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration”. Journal of Applied Geophysics, 83: 35-45. [22] Zuo, R., and Carranza, E. J. M. (2011). “Support vector machine: a tool for mapping mineral potential”. Computers & Geosciences, 37(12): 1967–1975. [23] Abedi, M., Norouzi, G. H., and Bahroudi, A. (2012a). “Support vector machine for multi-classification of mineral prospectivity areas”. Computers & Geosciences, 46: 272-283. [24] Rodriguez-Galiano, V. F., Chica-Olmo, M., and Chica-Rivas, M. (2014). “Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain”. International Journal of Geographical Information Science, 28: 1336-1354. [25] Carranza, E. J. M., and Laborte, A. G. (2015a). “Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forestsalgorithm”. Ore Geology Reviews, 71: 777-787. [26] Parsa, M., Maghsoudi, A., and Yousefi, M. (2018). “Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan District, NW Iran”. Ore Geology Reviews, 92: 97-112. [27] Porwal, A., Carranza, E. J. M., and Hale, M. (2006b). “Bayesian network classifiers for mineral potential mapping”. Computers & Geosciences, 32(1): 1-16. [28] Carranza, E. J. M., Mangaoang, J. C., and Hale, M. (1999). “Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines”. Natural Resources Research, 8: 165-173. [29] Mirzaei, M., Afzal, P., Adib, A., Khalajmasoumi, M., and Zarifi, A. Z. (2014). “Prospection of iron and manganese using index overlay and fuzzy logic methods in Balvard1:100,000 sheet, Southeastern Iran”. Iranian Journal of Earth Sciences, 6: 1-11. [30] Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., and Gardoll, S. J. (2008). “Reconnaissance-scale conceptual fuzzy-logicprospectivity modeling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland”. Australian Journal of Earth Sciences, 55: 25-38. [31] Afzal, P., Mirzaei, M., Yousefi, M., Adib, A., Khalajmasoumi, M., Zia Zarifi, A., Foster, P., and Yasrebi, A. B. (2016). “Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis”. Journal of African Earth Sciences 119: 139-149. [32] Bahrami, Y., Hassani, H., and Maghsoudi, A. (2020). “Landslide susceptibility mapping using AHP and fuzzy methods inthe Gilan province, Iran”. GeoJournal. https://doi.org/10.1007/s10708-020-10162-y. [33] Bahrami, Y., Hassani, H., and Maghsoudi, A. (2019). “BWM-ARAS: A new hybrid MCDM method for Cu prospectivity mapping in the Abhar area, NW Iran”. Spatial Statistics, 33: 100382. https://doi.org/10.1016/j.spasta.2019.100382. [34] Moon, W. M. (1990). “Integration of geophysical and geological data using evidential belief function”. IEEE Transactions on Geoscience and Remote Sensing, 28: 711-720. [35] Abedi, M., and Norouzi, G. H. (2015). “A general framework of TOPSIS method for integration of airbornegeophysics, satellite imagery, geochemical and geological data”. International Journal of Applied Earth Observation and Geoinformation, 46: 31-44. [36] Abedi, M., Torabi, S. A., Norouzi, G. H., Hamzeh, M., and Elyasi, G. R. (2012a). “PROMETHEE II: a knowledge-driven method for copper exploration”. Computers & Geosciences, 46: 255-263. [37] Keršulienė, V., Zavadskas, E. K., and Turskis, Z. (2010). “Selection of Rational Dispute Resolution Method by Applying New Step-wise Weight Assessment Ratio Analysis (SWARA)”. Journal of Business Economics and Management, 11(2): 243-258. [38] Alimardani, M., Zolfani, S. H., Aghdaie, M. H., and Tamošaitienė, J. (2013). “A Novel Hybrid SWARA and VIKOR Methodology for Supplier Selection in an Agile Environment”. Technological and Economic Development of Economy, 19(3): 533-548. [39] Sarfaraz, H. Z., Zavadskas, E. K., and Turskis, Z. (2013). “Design of Products with Both International and Local Perspectives based on Yin-Yang Balance Theory and Swara Method”. Economic Research, 26(2): 451-466. [40] Hashemkhani Zolfani, S., and Bahrami, M. (2014). “Investment prioritizing in high tech industries based on SWARA-COPRAS approach”. Technological and Economic Development of Economy, 20(3): 534-553. [41] Brauers, W. K., and Zavadskas, E. K. (2006). “The MOORA method and its application to privatization in a transition economy”. Control and Cybernetics, 35(2): 445-469. [42] Karande, P., and Chakraborty, S. (2012). “Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection”. Materials & Design, 37: 317-324. [43] Brauers, W. K., and Zavadskas, E. (2012). “Robustness of MULTIMOORA: A method for multi-objective optimization”. Informatica, 23(1): 1-25. [44] Liu, H. C., You, J. X., Lu, C., and Chen, Y. Z. (2015). “Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model”. Renewable and Sustainable Energy Reviews, 41: 932-942. [45] Cheng, Q., Agterberg, F. P., and Ballantyne, S. B. (1994). “The separation of geochemical anomalies from background by fractal methods”. Journal of Geochemical Exploration, 51(2): 109-130. [46] Hirayama, K., Haghipour, A., and Hajian, J. (1966). “Geological map of Zanjan”. Geological Survey of Iran (GSI). [47] قلیپور، م.؛ 1388؛"کنترل و معرفی نواحی امیدبخش معدنی در ورقه 1:100،000 زمینشناسی ابهر". سازمان زمینشناسی و اکتشافات معدنی کشور، تهران. [48] اختیارآبادی، م.؛ 1395؛"نقشه زمینشناسی 1:100،000 ورقه ابهر". سازمان زمینشناسی و اکتشافات معدنی کشور، تهران. [49] Zolfani, S. H., Aghdaie, M. H., Derakhti, A., Zavadskas, K. E., and Varzandeh, M. H. (2013). “Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating”. Expert Systems with Applications, 40(17): 7111-7121. [50] Hashemkhanizolfani, S., and Saparauskas, J. (2013). “New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System”. Inzinerine Ekonomika-E engineering Economics, 24(5): 408-414. [51] Alimardani, M., Hashemkhanizolfani, S., Aghdaie, M. H., and Tamosaitien, J. (2013). “A Novel Hybrid SWARA and VIKOR Methodology for Supplier Selection in an Agile Environment”. Technological and Economic Development of Economy, 19(3): 533-548. ISSN 2029- 4913 print/ISSN 2029- 4921. [52] Taherkhani, H., and Esfahani, M. H. (2012). “Choose the best plan overtaken by inhibiting the release of the release of the shoulder of a road of a using a new hybrid model of MCDM methods”. National Conference on Transportation Infrastructure, Iran University of and Technology, 1-11. [53] Stanujkic, D., Karabasevic, D., and Zavadskas, E. K. (2015). “Framework for the Selection of a packaging design based on the SWARA method”. Inzinerine Ekonomika–Engineering Economics, 26(2): 181-187. [54] Panahi, S., Khakzad, A., and Afzal, P. (2017). “Application of Step-wise Weight Assessment Ratio Analysis (SWARA) for copper prospectivity mapping in Anarak region, central Iran”. Arabian Journal of Geosciences, 10(484): 2-17. https://doi.org/10.1007/s12517-017-3290-8. [55] Shahsavar, S., Jafari Rad, A., Afzal, P., Nezafati, N., and Akhavan Aghdam, M. (2019). “Prospecting for polymetallic mineralization using step-wise weight assessment ratio analysis (SWARA) and fractal modeling in Aghkand Area, NW Iran”. Arabian Journal of Geosciences, 12(7): 248-257. [56] Hees, P., and Siciliano, J. (1996). “Management: Responsibility for performance”. New York, McGraw- Hill. [57] Forster, H. (1978). “Mesozoic - Cenozonic metallogensis in Iran”. Geological Society London, 135: 443-445. [58] Bahrami, Y., Hassani, H., and Maghsoudi, A. (2018). “Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar area, NW Iran”. Geosystem Engineering. DOI: 10.1080/12269328.2018.1557083. [59] Parsa, M., Maghsoudi, A., Yousefi, M., and Sadeghi, M. (2016a). “Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures”. Journal of African Earth Sciences, 114: 228-241. [60] Adib, A., Afzal, P., Mirzaei Ilani, Sh., and Aliyari, F. (2017). “Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran”. Journal of African Earth Sciences, 134: 308-319. [61] fzal, P., Adib, A., and Ebadati, N. (2018). “Delineation of seismic zonation using fractal modeling in West Yazd province, Central Iran”. Journal of Seismology, 22(6): 1377-1393. [62] قزلباش، ر.، مقصودی، ع.؛ 1397؛"استفاده از روش ترکیبی AHP-TOPSIS برای مدلسازی پتانسیل کانیزایی مس پورفیری در ورقه ورزقان، شمال باختر ایران". نشریه علوم زمین، دوره28 ، شماره 109، ص 33-42. [63] Mihalasky, M. J., and Bonham-Carter, G . F. (2001). “Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada”. Natural Resources Research, 10: 209-226. | ||
آمار تعداد مشاهده مقاله: 1,054 تعداد دریافت فایل اصل مقاله: 636 |