تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,131 |
تعداد مشاهده مقاله | 4,251,652 |
تعداد دریافت فایل اصل مقاله | 2,845,995 |
پیشبینی برق دستگاه برش اره برای سنگ ساختمانی با روش فازی چندمتغیره | ||
نشریه مهندسی منابع معدنی | ||
مقاله 4، دوره 5، شماره 1 - شماره پیاپی 15، خرداد 1399، صفحه 59-75 اصل مقاله (1.62 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2019.10547.1258 | ||
نویسندگان | ||
رضا میکائیل* 1؛ محمد عطایی2؛ وحید سبزی3؛ امیر جعفرپور4 | ||
1دانشیار گروه مهندسی معدن، دانشکده مهندسی معدن و مواد، دانشگاه صنعتی ارومیه، ارومیه | ||
2استاد دانشکده مهندسی معدن، نفت و ژئوفیریک، دانشگاه صنعتی شاهرود، شاهرود | ||
3کارشناسی ارشد، گروه مهندسی معدن، دانشکده مهندسی معدن و مواد، دانشگاه صنعتی ارومیه، ارومیه | ||
4دانشجوی دکترا، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد | ||
تاریخ دریافت: 07 اردیبهشت 1398، تاریخ بازنگری: 30 آذر 1398، تاریخ پذیرش: 30 آذر 1398 | ||
چکیده | ||
انرژی مصرفی دستگاههای برشدهنده سنگ یکی از فاکتورهای مهم هزینهساز در طی فرآیند برش سنگهای ساختمانی است. با پیشبینی دقیق انرژی مصرفی دستگاه برش، علاوه بر تخمین هزینههای برش، میتوان به شرایط بهینه عملیاتی برش در جهت کاهش مصرف انرژی نزدیک شد. در این پژوهش، سعی شده است تا با استفاده از سیستمهای طبقهبندی فازی چند فاکتوره، میزان قابلیت برشپذیری سنگهای ساختمانی نرم را از دیدگاه شدت جریان مصرفی دستگاه برش اره با توجه به مشخصات فیزیکی و مکانیکی از قبیل مقاومت کششی برزیلی، درصد کوارتز محتوای سنگ، اندازه متوسط دانه، مقاومت فشارشی تکمحوری، مدول یانگ و سختی موس مورد ارزیابی قرار داد. بدین منظور، پس از توسعه سیستم طبقهبندی فازی، هفت نمونه سنگ ساختمانی کربناته شامل تراورتن آذرشهر، تراورتن حاجیآباد، تراورتن درهبخاری، مرمریت هرسین، مرمریت صلصالی، مرمریت انارک و مرمریت هفتومان با استفاده از سیستم فازی ارایه شده، ردهبندی شد و نتایج با میزان شدت جریان مصرفی دستگاه برش اره مورد ارزیابی و اعتبارسنجی قرار گرفت. نتایج حاصل از بررسیها نشان داد که سیستم طبقهبندی فازی سه ردهای، قادر به ارزیابی بهتری از قابلیت برشپذیری سنگهای ساختمانی نرم از دیدگاه برق مصرفی دستگاه برش سنگ است. | ||
کلیدواژهها | ||
قابلیت برش سنگهای کربناته؛ ماشین برش اره؛ طبقهبندی فازی؛ برق مصرفی | ||
عنوان مقاله [English] | ||
Predicting the Ampere Consumption of Stone Sawing Machine in Cutting Process Using Multi-Element Fuzzy Approach | ||
نویسندگان [English] | ||
R. Mikaeil1؛ M. Ataei2؛ V. Sabzi3؛ A. Jafarpour4 | ||
1Associate Professor, Faculty of Mining and Metallurgical Engineering, Urmia University of Technology, Urmia, Iran | ||
2Professor, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran | ||
3M.Sc, Faculty of Mining and Metallurgical Engineering, Urmia University of Technology, Urmia, Iran | ||
4Ph. D Student, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran | ||
چکیده [English] | ||
Predicting the ampere consumption in carbonate rock sawing process is very important for the determination of the electrical energy cost per unit of production. In addition, ampere consumption prediction may be used for selecting the optimum operation parameters to obtain high production rate. In this study, it is aimed to develop fuzzy classification systems to evaluate and classify the carbonate rock based on physical and mechanical properties such as Brazilian tensile strength, equal quartz content, grain size, uniaxial compressive strength, Young modulus and Mohs hardness. Varieties of seven carbonate rocks such as Azarshahr travertine, Hajiabad travertine, Dare-bukhari travertine, Harsin marble, Salsali marble, Anarak marble and Haftooman marble were classified by developed fuzzy classification system. To validate the classification’s results, ampere consumption was recorded during sawing process for each studied rocks. The results of the study show that the three-class fuzzy classification system is capable to evaluate the carbonate rock saw-ability and ampere consumption during soft dimensional stone sawing process. | ||
کلیدواژهها [English] | ||
Carbonate rock sawability, Stone sawing machine, Fuzzy classification, Ampere consumption | ||
مراجع | ||
[1] Wang, C.Y., and Rolf, C. (2003). “Frame sawing of stone-Theory and technology”. In Key Engineering Materials, Trans Tech Publications, 250: 171-180. [2] Tönshoff, H. K., Hillmann-Apmann, H., and Asche, J. (2002). “Diamond tools in stone and civil engineering industry: cutting principles, wear and applications”. Diamond and Related Materials, 11(3-6): 736-741. [3] Wang, C. Y., and Clausen, R. (2002). “Marble cutting with single point cutting tool and diamond segments”. International Journal of Machine Tools and Manufacture, 42(9): 1045-1054. [4] Lons, H. H. (1970). “Basic research on frame sawing with diamond blades”. PhD thesis, University of Tu Hanover. [5] Jansen, R. (1977). “Das Spannen von Diamantgatterblattern für die Steinbearbeitung”. Industrie Diamanten Rundschau, 11(1): 33-36. [6] Gerlach, D. (1980). “Beanspruchung des Diamant-Werkzeugs beim Saeen von Agglomerat-Marmor”. Bergakademie Freiberg, Building Materials Industry, 24(4): pp. 107. [7] Wiemann, H. J., Büttner, A., Ertingshausen, W. and Schwartz, W. (1982). “A new method for the rapid and accurate measurement of the tension of frame saw blade”. Advances in Ultra Hard Materials Application Technology, 2: 127-138. [8] Wang, C. Y., and Clausen, R. (2003). “Computer simulation of stone frame sawing process using diamond blades”. International Journal of Machine Tools and Manufacture, 43(6): 559-572. [9] Bayram, F. (2013). “Prediction of sawing performance based on index properties of rocks”. Arabian Journal of Geosciences, 6(11): 4357-4362. [10] Tumac, D. (2016). “Artificial neural network application to predict the sawability performance of large diameter circular saws”. Measurement, 80: 12-20. [11] Mikaeil, R., Abdollahi Kamran, M., Sadegheslam, G., and Ataei, M. (2015). “Ranking sawability of dimension stone using PROMETHEE method”. Journal of Mining and Environment, 6(2): 263-271. [12] Neves, P. F., e Silva, M. C., Paneiro, G., and Frazão, M. (2016). “Prediction of slab production with multiblade Gang Saw”. International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & Mining Ecology Management, 2: 681-686. [13] Aryafar, A., and Mikaeil, R. (2016). “Estimation of the ampere consumption of dimension stone sawing machine using of artificial neural networks”. International Journal of Mining and Geo-Engineering, 50(1): 121-130. [14] Almasi, S. N., Bagherpour, R., Mikaeil, R., and Ozcelik, Y. (2017). “Developing a new rock classification based on the abrasiveness, hardness, and toughness of rocks and PA for the prediction of hard dimension stone sawability in quarrying”. Geosystem Engineering, 20(6): 295-310. [15] Tumac, D., and Shaterpour-Mamaghani, A. (2018). “Estimating the sawability of large diameter circular saws based on classification of natural stone types according to the geological origin”. International Journal of Rock Mechanics and Mining Sciences, 101: 18-32. [16] Dormishi, A., Ataei, M., Khalokakaei, R., and Mikaeil, R. (2018). “Energy consumption prediction of gang saws from rock properties in carbonate rocks cutting process”. International Journal of Mining and Mineral Engineering, 9 (3): 216-227. [17] Dormishi A., Ataei M., Khaloo Kakaie R., Mikaeil R., and Shaffiee Haghshenas S. (2018). “Performance evaluation of gang saw using hybrid ANFIS-DE and hybrid ANFIS-PSO algorithms”. Journal of Mining and Environment, 10(2): 543-557. DOI: 10.22044/jme.2018.6750.1496. [18] Shaffiee Haghshenas, S., Shirani Faradonbeh, R., Mikaeil, R., Shaffiee Haghshenas, S., Taheri, A., Saghatforoush, A., and Dormishi, A. (2019). “A new conventional criterion for the performance evaluation of gang saw machines”. Measurement, 146: 159-170. [19] Hellmann, M. (2005). “Fuzzy logic introduction”. Laboratoire Antennes Radar Telecom, F.R.E CNRS 2272, Equipe Radar Polarimetrie, University of de Rennes. France. [20] Zadeh, L. A. (2008). “Is there a need for fuzzy logic?”. Information Sciences, 178(13): 2751-2779. [21] Tutmez, B., Kahraman, S., and Gunaydin, O. (2007). “Multifactorial fuzzy approach to the sawability classification of building stones”. Construction and Building Materials, 21(8): 1672-1679. [22] Dubois, D., and Prade, H. (1986). “Weighted minimum and maximum operations in fuzzy set theory”. Information Sciences, 39(2): 205-210. [23] Yager, R. R. (1978). “Fuzzy decision making including unequal objectives”. Fuzzy Sets and Systems, 1(2): 87-95. [24] Wei, X., Wang, C. Y., and Zhou, Z. H. (2003). “Study on the fuzzy ranking of granite sawability”. Journal of Materials Processing Technology, 139(1-3): 277-280. | ||
آمار تعداد مشاهده مقاله: 704 تعداد دریافت فایل اصل مقاله: 559 |