تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,143 |
تعداد مشاهده مقاله | 4,284,358 |
تعداد دریافت فایل اصل مقاله | 2,871,489 |
ارزیابی معیارهای اثرگذار بر متان زدایی معادن زیرزمینی زغال سنگ با مدلسازی ساختاری تفسیری | ||
نشریه مهندسی منابع معدنی | ||
مقاله 5، دوره 4، شماره 4 - شماره پیاپی 14، دی 1398، صفحه 59-79 اصل مقاله (1.19 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2019.10201.1238 | ||
نویسندگان | ||
امیر جعفرپور1؛ مهدی نجفی* 2 | ||
1دانشجوی دکترا، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد | ||
2دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد | ||
تاریخ دریافت: 11 اسفند 1397، تاریخ بازنگری: 30 آذر 1398، تاریخ پذیرش: 07 دی 1398 | ||
چکیده | ||
متانزدایی پیش از عملیات استخراج و در حین استخراج معدن، راهبرد زیستسازگاری است که جایگاه ویژهای در صنعت زغالسنگ یافته است. عوامل و معیارهای مختلفی بر بازدهی عملیات متانزدایی اثرگذارند. بررسی رابطه میان این عوامل و نحوه اثرگذاری آنها بر روند فرآیند گاززدایی متان، امر بسیار مهمی است که تاکنون کمتر مورد توجه قرار گرفته است. در این پژوهش، معیارهایی که بیشترین تاثیر را بر بازدهی عملیات گاززدایی دارند، مشخص شدند. سپس با بهکارگیری روش مدلسازی ساختاری تفسیری (ISM)، این معیارها در سطوح مختلفی رتبهبندی شدند. نتایج این پژوهش حاکی از آن است که رتبه زغالسنگ و پارامترهای ژئومکانیکی، معیارهای فنی مربوط به حفاری چالها و نیز ساختار زمینشناسی روباره لایه با داشتن حداکثر میزان اثرگذاری بر فرآیند گاززدایی متان معادن زیرزمینی زغالسنگ در سطح اول قرار گرفتهاند. هزینههای سرمایهای و عملیاتی مربوط به فرآیند متانزدایی نیز با قرارگیری در سطح پنجم مدل، کمترین اثرگذاری را بر متانزدایی دارند. در نهایت، با ترسیم نمودار تجزیه و تحلیل قدرت نفوذ و وابستگی (MICMAC) و بررسی آن، دستهبندی هر یک از معیارها بر اساس میزان نفوذ و وابستگی انجام شده است. با توجه به نظرات خبرگان در خصوص نتایج حاصل از پژوهش و سازگاری نتایج با شرایط واقعی، صحت نتایج پس از اعتبارسنجی توسط خبرگان و قابلیت رویکرد ISM مورد تایید بوده است و میتوان از نتایج این پژوهش در راستای اهداف مدیریتی و بهینهسازی فرآیند متانزدایی معادن زیرزمینی زغالسنگ بهره گرفت. | ||
کلیدواژهها | ||
متانزدایی از معادن زیرزمینی زغالسنگ (CMM)؛ مدلسازی ساختاری تفسیری؛ متان لایه زغالسنگ (CBM) | ||
عنوان مقاله [English] | ||
Evaluating the Criteria affecting Methane Drainage in Underground Coal Mines Using Interpretive Structural Modeling | ||
نویسندگان [English] | ||
A. Jafarpour1؛ M. Najafi2 | ||
1Ph.D Student, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran | ||
2Associate Professor, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran | ||
چکیده [English] | ||
The Coal Mine Methane (CMM) process involves: exploration, extraction and drainage of methane gas in underground mining during extraction process. Various factors affect the CMM operation efficiency. Investigating the relationship between these factors and their effect on the process of CMM is very important which has been less attractive to researchers so far. In this research, the effective criteria on the efficiency of CMM were identified using previous studies and expert opinions. Then, the criteria were classified in different levels using the Interpretative Structural Modeling (ISM) method. Then, the underlying relationships between the variables were determined using the experience and practical knowledge of the experts. Finally, a multi-level structural model was created. The results of this study indicated that the coal rank, geomechanical parameters and technical specifications of drilling holes of gas drainage are in the first level with the maximum impact on the process of CMM of underground coal mines. The capital and operational costs related to the CMM process are also at the fifth level of the model and have the least effect on CMM operation. Eventually, by charting the “Matrice d’Impacts Croises-Multiplication Appliqúe an Classment” (MICMAC) and its review, the categorization was done for each criterion based on the degree of influence and dependency. The results of this research can be used for management purposes and methane optimization of underground coal mines. | ||
کلیدواژهها [English] | ||
Coal Mine Methane (CMM), Interpretive Structural Modeling (ISM), Coal Bed Methane (CBM) | ||
مراجع | ||
[1] Hartman, H. L., Mutmansky, J. M., Ramani, R. V., and Wang, Y. J. (2012). “Mine ventilation and air conditioning”. 3rd edition. John Wiley & Sons, pp. 752. [2] Howard, L., Hartman, H. I. (1992). “Methane Drainage”. In: Gerald/ L. Finger and Michael/A., Trivets, Handbook of Mining Engineering, Inc. Littleton Colorado, Society for Mining, Metallurgy and Exploration, 896-937. [3] Chen, H., Qi, H., Long, R., and Zhang, M. (2012). “Research on 10-year tendency of China coal mine accidents and the characteristics of human factors”. Safety Science, 50(4): 745-750. [4] Gayer, R., and Harris, I. (Eds.). (1996). “Coalbed methane and coal geology”. Geological Society, London, 109: 103-120. [5] Su, X., Liu, X., Song, Y., and Zhao, M. (2004). “The classification of coal bed methane reservoirs”. Acta Geologica Sinica-English Edition, 78(3): 662-666. [6] Solomon, G. (2006). “A major alternative energy opportunity”. Eden Energy Ltd., pp. 46. [7] Yanbin, Y., Dameng, L., Dazhen, T., Wenhui, H., Shuheng, T., and Yao, C. (2008). “A comprehensive model for evaluating coalbed methane reservoirs in China”. Acta Geologica Sinica-English Edition, 82(6): 1253-1270. [8] Chen, K. C., Irawan, S., Sum, C. W., and Tunio, S. Q. (2011). “Preliminary study on gas storage capacity and gas-in-place for CBM potential in Balingian coalfield, Sarawak Malaysia”. In National Postgraduate Conference (NPC), IEEE, 1-12. [9] Karacan, C. Ö., Ruiz, F. A., Cotè, M., and Phipps, S. (2011). “Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction”. International Journal of Coal Geology, 86(2-3): 121-156. [10] Crosdale, P. J., Beamish, B. B., and Valix, M. (1998). “Coalbed methane sorption related to coal composition”. International Journal of Coal Geology, 35(1-4): 147-158. [11] Fox, D. (2009). “Coal bed natural gas development”. Natural Resource Specialist, 406: 233-236. [12] Laubach, S. E., Marrett, R. A., Olson, J. E., and Scott, A. R. (1998). “Characteristics and origins of coal cleat: a review”. International Journal of Coal Geology, 35(1-4): 175-207. [13] Laxminarayana, C., and Crosdale, P. J. (1999). “Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals”. International Journal of Coal Geology, 40(4): 309-325. [14] Karacan, C. Ö. (2009). “Forecasting gob gas venthole production performances using intelligent computing methods for optimum methane control in longwall coal mines”. International Journal of Coal Geology, 79(4): 131-144. [15] Gentzis, T. (2009). “Stability analysis of a horizontal coalbed methane well in the Rocky Mountain Front Ranges of southeast British Columbia, Canada”. International Journal of Coal Geology, 77(3-4): 328-337. [16] Hemza, P., Sivek, M., and Jirásek, J. (2009). “Factors influencing the methane content of coal beds of the Czech part of the Upper Silesian Coal Basin, Czech Republic”. International Journal of Coal Geology, 79(1-2): 29-39. [17] Sang, S. X., Liu, H. H., Li, Y. M., Li, M. X., and Li, L. (2009). “Geological controls over coal-bed methane well production in southern Qinshui basin”. Procedia Earth and Planetary Science, 1(1): 917-922. [18] Huang, H., Shuxun, S. A. N. G., Liangcai, F. A. N. G., Guojun, L. I., Hongjie, X. U., and Bo, R. E. N. (2010). “Optimum location of surface wells for remote pressure relief coalbed methane drainage in mining areas”. Mining Science and Technology (China), 20(2): 230-237. [19] Paul, S., and Chatterjee, R. (2011). “Determination of in-situ stress direction from cleat orientation mapping for coal bed methane exploration in south-eastern part of Jharia coalfield, India”. International Journal of Coal Geology, 87(2): 87-96. [20] Keim, S. A., Luxbacher, K. D., and Karmis, M. (2011). “A numerical study on optimization of multilateral horizontal wellbore patterns for coalbed methane production in Southern Shanxi Province, China”. International Journal of Coal Geology, 86(4): 306-317. [21] Liu, H., Yu, F., Yin, R., and Liu, R. (2011). “Effects of Geologic Condition to Mine Gas Distribution and Control Measures”. Procedia Earth and Planetary Science, 3: 355-363. [22] Moore, T. A. (2012). “Coalbed methane: a review”. International Journal of Coal Geology, 101: 36-81. [23] Jin, X., Li, J., Yang, Z., and Zhang, P. (2012). “The Optimization of the Coalbed Methane Assessment Indexes in the High Abundance Coalbed Methane Enrichment Area in the Case of the Southern Part of the Qinshui Basin, China”. Procedia Earth and Planetary Science, 3: 175-182. [24] Rodrigues, C. F., Laiginhas, C., Fernandes, M., De Sousa, M. L., and Dinis, M. A. P. (2014). “The coal cleat system: A new approach to its study”. Journal of Rock Mechanics and Geotechnical Engineering, 6(3): 208-218. [25] Karacan, C. Ö., Drobniak, A., and Mastalerz, M. (2014). “Coal bed reservoir simulation with geostatistical property realizations for simultaneous multi-well production history matching: a case study from Illinois Basin, Indiana, USA”. International Journal of Coal Geology, 131: 71-89. [26] Gong, B., Zhang, Y., Fan, Y., and Qin, G. (2014). “A novel approach to model enhanced coal bed methane recovery with discrete fracture characterizations in a geochemical simulator”. Journal of Petroleum Science and Engineering, 124: 198-208. [27] Zhang, L., Yan, X., Yang, X., and Zhao, X. (2015). “An analytical model of coal wellbore stability based on block limit equilibrium considering irregular distribution of cleats”. International Journal of Coal Geology, 152: 147-158. [28] Tang, D. Z., Deng, C. M., Meng, Y. J., Li, Z. P., Xu, H., Tao, S., and Li, S. (2015). “Characteristics and control mechanisms of coalbed permeability change in various gas production stages”. Petroleum Science, 12(4): 684-691. [29] Zhao, J., Tang, D., Xu, H., Lv, Y., and Tao, S. (2015). “High production indexes and the key factors in coalbed methane production: A case in the Hancheng block, southeastern Ordos Basin, China”. Journal of Petroleum Science and Engineering, 130: 55-67. [30] Xin, Z. H. A. O., JIANG, B., Qiang, X. U., Jiegang, L. I. U., Yue, Z. H. A. O., and Piaopiao, D. U. A. N. (2016). “Well pattern design and optimal deployment for coalbed methane development”. Petroleum Exploration and Development, 43(1): 89-96. [31] Li, S., and Zhang, B. (2016). “Research of Coalbed Methane Development Well-Type Optimization Method Based on Unit Technical Cost”. Sustainability, 8(9): pp. 843. [32] Zhou, J., Liang, G., Deng, T., and Zhou, S. (2017). “Optimization design of coalbed methane pipeline network–coupled wellbore/reservoir simulation”. Advances in Mechanical Engineering, 9(6): 7-8. DOI: 1687814017708905. [33] Rezaee, M. J., Yousefi, S., and Hayati, J. (2019). “Root barriers management in development of renewable energy resources in Iran: An interpretative structural modeling approach”. Energy Policy, 129: 292-306. [34] Yousefi, S., Hayati, J., and Yousefi, S. (2017). “Identification and Management of the Main Challenges in Saffron Industry in Iran”. Journal of Industrial Strategic Management (PAJOUHESHGAR), 2(2): 97-114. [35] Faisal, M. N., Banwet, D. K., and Shankar, R. (2007). “Quantification of Risk Mitigation Environment of Supply Chains Using Graph Theory and Matrix Methods”. European Journal of Industrial Engineering, 1(1): 29-39. [36] Huang, J., Tzeng, G., and Ong, Ch. (2005). “Multidimensional data in multi-dimensional scaling using the analytic network process”. Pattern Recognition Letters, 26: 755-767. [37] Thakkar, J., Deshmukh, S. G., Gupta, A. D., and Shankar, R. (2006). “Development of a balanced scorecard: an integrated approach of interpretive structural modeling (ISM) and analytic network process (ANP)”. International Journal of Productivity and Performance Management, 56(1): 25-59. [38] Kannan, G., Haq, A. N., Sasikumar, P., and Arunachalam, S. (2008). “Analysis and selection of green suppliers using interpretative structural modeling and analytic hierarchy process”. International Journal of Management and Decision Making, 9(2): 163–82. [39] Mandal, A., and Deshmukh, S. G. (1994). “Vendor selection using interpretive structural modeling (ISM)”. International Journal of Operation & Production Management, 14(6): 52-59. [40] Agarwal, A., Shankar, R., and Tiwari, M. K. (2007). “Modeling agility of supply chain”. Industrial Marketing Management, 36(4): 443-457. [41] Ravi, V., and Shankar, R. (2005). “Analysis of interactions among the barriers of reverse logistics”. Technological Forecasting and Social Change, 72(8): 1011-1029. [42] Faisal M. N., Banwat D. K. and Shankar R. (2006). “Supply Chain Risk Mitigation: Modeling the Enablers”. Busness Process Management Journal, 12(4): 532-552. [43] Kannan, G., and Haq, A. N. (2007). “Analysis of interactions of criteria and sub-criteria for the selection of supplier in the built-in-order supply chain environment”. International Journal of Production Research, 45(17): 3831-3852. [44] Thakkar, J., Kanda, A., and Deshmukh, S. G. (2008). “Evaluation of buyer supplier relationships using an integrated mathematical approach of interpretive structural modeling (ISM) and graph theoretic matrix: The case study of Indian automotive SMEs”. Journal of Manufacturing Technology Management, 19(1): 92–124. [45] Lambert, S. W., Trevits, M. A., and Steidl, P. F. (1980). “Vertical borehole design and completion practices used to remove methane gas from mineable coalbeds”. (No. DOE/CMTC/TR-80/2). Department of Energy, Carbondale, IL (USA). Carbondale Mining Technology Center; Bureau of Mines, Pittsburgh, PA (USA). Pittsburgh Mining and Safety Research Center, pp. 163. [46] نجفی، م.؛ 1393؛"بررسی تأثیر پارامترهای زمینشناسی بر عملیات زهکشی گاز متان از لایههایزغالسنگ". همایشملیزمینشناسی و اکتشاف منابع، شیراز،ص 94-101. [47] یزدی، م.؛ 1382؛"زغالسنگ (از منشأ تا اثرات زیستمحیطی)". انتشارات جهاد دانشگاهی واحد صنعتی امیرکبیر، تهران، 280 صفحه. [48] Laxminarayana, C., and Crosdale, P. J. (1999). “Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals”. International Journal of Coal Geology, 40(4): 309-325. [49] Hemza, P., Sivek, M., and Jirásek, J. (2009). “Factors influencing the methane content of coal beds of the Czech part of the Upper Silesian Coal Basin, Czech Republic”. International Journal of Coal Geology, 79(1-2): 29-39. [50] Black, D. J. (2011). “Factors affecting the drainage of gas from coal and methods to improve drainage effectiveness”. (Ph.D. Thesis) University of Wollongong. pp. 149. [51] Peng, S. S. (2006). “Longwall mining”. 2nd Edition, Morgantown, West Virginia University, pp. 621. [52] Meng, S., Li, Y., Wang, L., Wang, K., and Pan, Z. (2018). “A mathematical model for gas and water production from overlapping fractured coalbed methane and tight gas reservoirs”. Journal of Petroleum Science and Engineering, 171: 959-973. [53] محمدی، ح.، آقاجانی، ح.، نجفی، م.؛ 1390؛“اولویتبندی مناطق مستعد زهکشی گاز متان در حوضه زغالی البرز شرقی با استفاده از فرایند تحلیل سلسله مراتبی”. فصلنامهزمینشناسی کاربردی، سال هفتم، شماره 2، ص 167-176. [54] Clarkson, C. R., and Bustin, R. M. (1997). “Variation in permeability with lithotype and maceral composition of Cretaceous coals of the Canadian Cordillera”. International Journal of Coal Geology, 33(2): 135-151. [55] Lu, T., Guo, Y., and Yang, X. (2016). “Coal seam fracturing by a high-pressure waterjet technique to increase efficiency of coal mine gas drainage”. Journal of the Southern African Institute of Mining and Metallurgy, 116(1): 79-84. [56] Likai, Z., Youjun, J., Tianhong, Y., and Xiaoyu, L. (2016). “Analysis on production of coal bed methane considering the change in permeability of coal rock”. The Open Petroleum Engineering Journal, 9(1): 289-298. [57] Moore, T. A. (2012). “Coalbed methane: a review”. International Journal of Coal Geology, 101: 36-81. [58] Paul, S., and Chatterjee, R. (2011). “Determination of in-situ stress direction from cleat orientation mapping for coal bed methane exploration in south-eastern part of Jharia coalfield, India”. International Journal of Coal Geology, 87(2): 87-96. [59] Liu, B., Ao, W. H., Huang, W. H., Xu, Q. L., and Teng, J. (2014). “Comprehensive Analysis of Factors Affecting Coalbed Methane Productivity: A Case Study of Southern Qinshui Basin”. In Advanced Materials Research, Trans Tech Publications, 962: 21-28. [60] Xie, Z., Zhang, D., Song, Z., Li, M., Liu, C., and Sun, D. (2017). “Optimization of drilling layouts based on controlled presplitting blasting through strata for gas drainage in coal roadway strips”. Energies, 10(8): 1228. [61] Zhou, J., Liang, G., Deng, T., Zhou, S., and Gong, J. (2017). “Coalbed Methane Production System Simulation and Deliverability Forecasting: Coupled Surface Network/Wellbore/Reservoir Calculation”. International Journal of Chemical Engineering, pp. 13. [62] Kumar, H., Udayakumar, D. L., Stojcevski, A., and Maung Than Oo, A. M. (2014). “Underground Coal Gasification: An alternate, Economical, and Viable Solution for future Sustainability”. International Journal of Engineering Science Invention, 3(1): 56-67. [63] Durucan, S., Korre, A., Shi, J. Q., Idiens, M., Stańczyk, K., Kapusta, K., Rogut-Dabrowska, A., Kempka, T., Wolf, K. H., Younger, P., and Zavsek, S. (2014). “TOPS: Technology options for coupled underground coal gasification and CO2 capture and storage”. Energy Procedia, 63: 5827-5835. [64] Rich, J. (2003). “Brain storm: Tap into your creativity to generate awesome ideas and remarkable results”. Career Press, pp. 187. [65] آقاییفیشانی،ت.؛ 1377؛"خلاقیت و نوآوری در انسانها و سازمانها". ترمه، تهران، 356 صفحه. [66] هیگینز،ج. م.؛ 1381؛"کارآفرینی: 101 تکنیکحل خلاق مسأله". ترجمه: محمود احمدپور داریانی، امیرکبیر، تهران، 248 صفحه.
| ||
آمار تعداد مشاهده مقاله: 487 تعداد دریافت فایل اصل مقاله: 974 |