تعداد نشریات | 19 |
تعداد شمارهها | 385 |
تعداد مقالات | 3,153 |
تعداد مشاهده مقاله | 4,301,785 |
تعداد دریافت فایل اصل مقاله | 2,895,385 |
Combining Sequential Gaussian Simulation and Fractal Analysis for Mapping of Cu Concentration in Haftcheshmeh Porphyry Copper Deposit | ||
نشریه مهندسی منابع معدنی | ||
مقاله 3، دوره 6، شماره 1 - شماره پیاپی 19، فروردین 1400، صفحه 27-40 اصل مقاله (2.5 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2019.10686.1263 | ||
نویسندگان | ||
M.J. Mohammadzadeh* 1؛ P. Mohebbi2 | ||
1Associate Professor, Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran | ||
2Ph.D Candidate, Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran | ||
تاریخ دریافت: 28 اردیبهشت 1398، تاریخ بازنگری: 19 خرداد 1399، تاریخ پذیرش: 15 تیر 1398 | ||
چکیده | ||
In this paper a hybrid approach of Sequential Gaussian Simulation (SGSIM) and Concentration-Volume (C-V) fractal method was applied to boreholes data for classification of major geochemical parameters and associated features with alteration zones of the Haftcheshmeh Cu deposit in NW of Iran. Thereupon, Cu parameters were detected with higher efficiency and lower uncertainty. The purpose is also extended to delineate the alteration zones pertinent to Cu mineralization. Firstly, the most straightforward simulation (SGSIM) was utilized for projecting different lithogeochemical parameters of Cu. Then the C-V fractal model was used to discriminate these parameters by thresholds, obtained from the C-V Log-Log plot. The Fractal based resulting maps of 10 realizations and their E-type indicate their association with potassic alteration that has imposed on porphyry granodiorite. Moreover, these maps illustrate that the boreholes (1, 9, 23, and 31) at about longitudes of 643400 to 643800 are more promising than others. This fact explicitly had been correlated with reality of the studied area and denoted in its primary surface map. The results based on SGSIM, C-V confirmed enhanced mineralization in three-dimensional maps of the Haftcheshmeh deposit as a powerful combined method that can be used to detect the similar ore zones in continuation of the ore roots in adjacent areas. | ||
کلیدواژهها | ||
Sequential Gaussian Simulation؛ (C-V) Fractal؛ Cu geochemical potential mapping؛ Alterations؛ Haftcheshmeh؛ Iran | ||
عنوان مقاله [English] | ||
Combining Sequential Gaussian Simulation and Fractal Analysis for Mapping of Cu Concentration in Haftcheshmeh Porphyry Copper Deposit | ||
نویسندگان [English] | ||
M.J. Mohammadzadeh1؛ P. Mohebbi2 | ||
1Associate Professor, Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran | ||
2Ph.D Candidate, Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran | ||
چکیده [English] | ||
In this paper a hybrid approach of Sequential Gaussian Simulation (SGSIM) and Concentration-Volume (C-V) fractal method was applied to boreholes data for classification of major geochemical parameters and associated features with alteration zones of the Haftcheshmeh Cu deposit in NW of Iran. Thereupon, Cu parameters were detected with higher efficiency and lower uncertainty. The purpose is also extended to delineate the alteration zones pertinent to Cu mineralization. Firstly, the most straightforward simulation (SGSIM) was utilized for projecting different lithogeochemical parameters of Cu. Then the C-V fractal model was used to discriminate these parameters by thresholds, obtained from the C-V Log-Log plot. The Fractal based resulting maps of 10 realizations and their E-type indicate their association with potassic alteration that has imposed on porphyry granodiorite. Moreover, these maps illustrate that the boreholes (1, 9, 23, and 31) at about longitudes of 643400 to 643800 are more promising than others. This fact explicitly had been correlated with reality of the studied area and denoted in its primary surface map. The results based on SGSIM, C-V confirmed enhanced mineralization in three-dimensional maps of the Haftcheshmeh deposit as a powerful combined method that can be used to detect the similar ore zones in continuation of the ore roots in adjacent areas. | ||
کلیدواژهها [English] | ||
Sequential Gaussian Simulation, (C-V) Fractal, Cu geochemical potential mapping, Alterations, Haftcheshmeh, Iran | ||
مراجع | ||
[1] Deutsch, C., and Journel, A. G. (1998). “GSLIB: Geostatistical Software Library and User’s Guide Second Edition”. Oxford University Press, New York, pp. 369. [2] Leuangthong, O., McLennan, J. A., and Deutsch, C. (2004). “Minimum acceptance criteria for geostatistical realizations”. Natural Resources Research, 13: 131-141. [3] Chen, F., Chen, S., and Peng, G. (2013). “Using Sequential Gaussian Simulation to Assess Geochemical Anomaly Areas of Lead Element”. In: Li D., Chen Y. (Eds.) Computer and Computing Technologies in Agriculture VI. CCTA 2012. IFIP Advances in Information and Communication Technology, Berlin, Heidelberg, 393: 69-76. [4] Asghari, O., and Madani Esfahani, N. (2013). “A new approach for the geological risk evaluation of coal resources through a geostatistical simulation”. Arabian Journal of Geosciences, 6: 929-943. [5] Rezaee, H. , Mariethoz, G., Koneshloo, M., and Asghari, O. (2013). “Multiple-point geostatistical simulation using the bunch-pasting direct sampling method”. Computers & Geosciences, 54: 293-308. [6] Cheng, Q., Agterberg, F. P., and Ballantyne, S. B. (1994). “The separation of geochemical anomalies from background by fractal methods”. Journal of Geochemical Exploration, 51: 109-130. [7] Mandelbrot, B. B. (1983). “The fractal geometry of nature”. Freeman, New York, pp. 460. [8] Cheng, Q., Xu, Y., and Grunsky, E. (2000). “Integrated spatial and spectrum method for geochemical anomaly separation”. Natural Resources Research, 9: 43-52. [9] Li, C., Ma, T., and Shi, j. (2003). “Application of fractal method relating concentrations and distances for separation of geochemical anomalies from background”. Journal of Geochemical Exploration, 77: 167-175. [10] Cheng, Q. (2007). “Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan province, China”. Ore Geology Reviews, 32: 314-324. [11] Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P., and Rashidnejad Omran, N. (2011). “Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling”. Journal of Geochemical Explorationr, 108: 220-232. [12] Zuo, R., Xia, O., and Zhang, D. (2013). “A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas”. Applied Geochemistry, 33: 165-172. [13] Afzal, P., Alhoseini, S. H., Tokhmechi, B., Kaveh Ahangarana, D.,Yasrebi, A. B., Madani, N., and Wetherelt, A. (2014). “Outlining of high quality coking coal by Concentration-Volume fractal Model and Turning Bands Simulation in East-Parvadeh Coal Deposit, Central Iran”. International Journal of Coal Geology, 127: 88-99. [14] Hajsadeghi, S., Asghari, O., Mirmohammadi, M., Afzal, P., and Meshkani, S. A. (2018). “Uncertainty-Volume fractal model for delineating copper mineralization controllers using geostatistical simulation in Nohkouhi volcanogenic massive sulfide deposit, Central Iran”. Bulletin of the Mineral Research and Exploration, 161: 1-10. [15] Afzal, P., Eskandarnejad Tehrani, M., Ghaderi, M., and Hosseini, M. R. (2016). “Delineation of supergene enrichment, hypogene and oxidation zones utilizing staged factor analysis and fractal modeling in Takht-e-Gonbad porphyry deposit, SE Iran. Journal of Geochemical Exploration”. Journal of Geochemical Exploration, 161: 119-127. [16] Mohammadzadeh, M. J., and Mohebbi, P. (2018). “An orientation survey for methodizing classification accuracy of Cu mineralization by hybrid methods of fractal, neural networks, and support vector machine in Haftcheshmeh, NW Iran”. Arabian Journal of Geosciences, 11: 618- 638. [17] Mohammadzadeh, M. J., and Nasseri, A. (2018). “Geochemical modeling of orogenic gold deposits using PCANN hybrid method in the Alut, Kurdistan province, Iran”. Journal of African Earth Sciences, 139: 173-183. [18] Hassanpour, S., Rasa, I., Heidari, M., Motakan, A. A., and Moaied, M. (2011). “Geology, alteration and mineralization in Cu-Mo porphyry reserves of Haftcheshmeh”. Iranian Journal of Geology, 15: 15-28. [19] Sohrabi, G., Hossenzadeh, M. R., Calagari, A. A., and Hajalilou, B. (2015). “Study of Mo mineralization in Gharadagh (Ordubad)-Shivardagh strip with emphasis on alteration, petrology and geochemistry of host intrusive bodies (NW Iran)”. Quarterly Geosciences, Geological Survey of Iran, 24: 243-258. [20] Remy, N. (2004). “Geostatistical earth modeling software”. User’s manual, pp. 87. [21] Journel, A. G. (1993). “Geostatistics: roadblocks and challenges”. In soares A. (Ed.), Geostatistics-Troia, Dordrecht, Kluwer Academic Publishers, Vol.1. [22] Goovaerts, P. (1997a). “Geostatistic for natural resources evaluation”. Oxford university Press, New York, pp. 483. | ||
آمار تعداد مشاهده مقاله: 384 تعداد دریافت فایل اصل مقاله: 389 |