تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,489 |
تعداد دریافت فایل اصل مقاله | 2,845,934 |
بهینه سازی پارامترهای موثر بر فروشویی اسیدی فلزات باارزش از ضایعات باتری های لیتیومی | ||
نشریه مهندسی منابع معدنی | ||
مقاله 7، دوره 5، شماره 3 - شماره پیاپی 17، مهر 1399، صفحه 127-145 اصل مقاله (1.56 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2020.11943.1329 | ||
نویسندگان | ||
احسان اسدی دالینی1؛ غلامرضا کریمی2؛ سعید زندوکیلی* 3 | ||
1کارشناسی ارشد فرآوری مواد معدنی، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بینالمللی امام خمینی (ره)، قزوین | ||
2دانشیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه بینالمللی امام خمینی (ره)، قزوین | ||
3استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه ولیعصر رفسنجان(عج)، کرمان | ||
تاریخ دریافت: 07 آبان 1398، تاریخ بازنگری: 02 تیر 1399، تاریخ پذیرش: 03 تیر 1399 | ||
چکیده | ||
باتریهای مصرفشده لیتیم-یون، حاوی فلزات باارزش (لیتیم، کبالت، منگنز و نیکل) و ترکیبات آلی سمی بوده و به همین دلیل بازیافت آنها بهمعنای بازیابی و تولید فلزات باارزش از منابع عظیم ثانویه و همچنین رعایت الزامات زیستمحیطی است. در این مطالعه بهمنظور انحلال فلزات حاصله از باتریهای مصرفشده لیتیم–یون از روش هیدرومتالورژی دو مرحلهای شامل پیشفرآوری و لیچینگ فلزات باارزش استفادهشده است. در مرحله پیشفرآوری به خنثیسازی، خردایش و جداسازی اجزای مختلف باتریهای لیتیم–یون پرداخته شد. سپس، فرآیند انحلال فلزات باارزش آنها با استفاده از استیک اسید (اسید آلی) و سولفوریک اسید (اسید معدنی) بهعنوان عامل انحلال و هیدروژن پراکساید بهعنوان عامل کاهنده، موردبررسی قرار گرفت. از دیگر معیارهای موردمطالعه برای بهینهسازی شرایط آزمایش، میتوان به غلظت اسید، غلظت هیدروژن پراکساید، نسبت جامد به مایع، مدتزمان و دما اشاره کرد. بازیابی فلزات لیتیم، کبالت، منگنز و نیکل در شرایط بهینه آزمایش و حضور اسیدسولفوریک 2 مولار، دمای 60 درجه سانتیگراد، مدتزمان 80 دقیقه، غلظت 4 درصد حجمی هیدروژن پراکساید و نسبت جامد به مایع 30 گرم برلیتر بهترتیب برابر با 40/98%، 99%، 53/97% و 78/96% حاصل شد. | ||
کلیدواژهها | ||
باتریهای لیتیم-یون؛ روشهای هیدرومتالورژیکی؛ بازیافت؛ فلزات باارزش؛ لیچینگ | ||
عنوان مقاله [English] | ||
Optimization of Effective Parameters on Acidic Leaching of Valuable Metals from Spent Li-Ion Batteries | ||
نویسندگان [English] | ||
E. Asadi Dalini1؛ Gh.R. Karimi2؛ S. Zandevakili3 | ||
1M.Sc Student, Dept. of Mining Engineering, Imam Khomeini International University, Qazvin, Iran | ||
2Associate Professor, Dept. of Mining Engineering, Imam Khomeini International University, Qazvin, Iran | ||
3Assistant Professor, Dept. of Mining Engineering, Vali-e-Asr University of Rafsanjan, Kerman, Iran | ||
چکیده [English] | ||
The spent lithium-ion batteries contain valuable metals (lithium, cobalt, manganese and nickel) and organic compounds that recycle of these batteries, means recovery and production of valuable metals from huge secondary sources as well as environmental requirements. In this paper, hydrometallurgy technique was used in two steps (pretreatment, leaching of valuable metals) to dissolve the metals from spent lithium-ion batteries. In the pretreatment step, neutralized, fragmentation and separation of the various compound of spent lithium-ion batteries were investigated. Then, the dissolution of valuable metals from spent lithium-ion batteries using acetic acid (organic acid) and sulfuric acid (mineral acid) was investigated as the dissolution agent and hydrogen acid as the reducing agent. Other studied parameters are used to optimize the experimental conditions include acid concentration, hydrogen peroxide concentration, solid to liquid ratio, time and temperature. Leaching efficiency of lithium, cobalt, manganese and nickel metals under optimum test conditions in the presence of 2 M sulfuric acid, 60 °C, 80 min, 4% v/v hydrogen peroxide, and solid to liquid ratio of 30 g/L, respectively, %98.40, %99, %97.53 and %96.78 were obtained. | ||
کلیدواژهها [English] | ||
Lithium-ion batteries, Hydrometallurgy technique, Recycling, Valuable metals, Leaching | ||
مراجع | ||
[1] Wang, M. M., Zhang, C. C., and Zhang, F. S. (2016). “An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach”. Waste Management, 51: 239-244. [2] Gonçalves, S. A., Garcia, E. M., Taroco, H. A., Teixeira, R. G., Guedes, K. J., Gorgulho, H. F., Martelli, P. B. and Fernandes, A. P. L. (2015). “Development of non-enzymatic glucose sensor using recycled cobalt from cell phone Li-ion batteries”. Waste Management, 46: 497-502. [3] He, L. P., Sun, S. Y., Song, X. F., and Yu, J. G. (2017). “Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries”. Waste Management, 64: 171-181. [4] Chen, X., Kang, D., Cao, L., Li, J., Zhou, T., and Ma, H. (2019). “Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step”. Separation and Purification Technology, 210: 690-697. [5] Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., and Rutz, M. (2012). “Development of a recycling process for Li-ion batteries”. Journal of Power Sources, 207: 173-182. [6] Gratz, E., Sa, Q., Apelian, D., and Wang, Y. (2014). “A closed loop process for recycling spent lithium ion batteries”. Journal of Power Sources, 262: 255-262. [7] Zhang, T., He, Y., Wang, F., Ge L., Zhu, X., and Li, H. (2014). “Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques”. Waste Management, 34: 1051-1058. [8] Zeng, X., Li, J., and Singh, N. (2014). “Recycling of spent lithium-ion battery: A critical review”. Critical Reviews in Environmental Science and Technology, 44: 1129-1165. [9] Guo, Y., Li, F., Zhu, H., Li, G., Huang, J., and He, W. (2016) “Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)”. Waste Management, 51: 227-233. [10] Nayaka, G. P., Pai, K. V., Manjanna, J., and Keny, S. J. (2016). “Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries”. Waste Management, 51: 234-238. [11] Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F., and Chen, R. (2018). “Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching”. Waste Management, 71: 362-371. [12] Zeng, X., Li, J., and Shen, B. (2015). “Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid”. Journal of Hazardous Materials, 295: 112-118. [13] Jha, M. K., Kumari, A., Jha, A. K., Kumar, V., Hait, J., and Pandey, B. D. (2013). “Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone”. Waste Management, 33: 1890-1897. [14] Wang, X., Gaustad, G., Babbitt, C. W., and Richa, K. (2014). “Economies of scale for future lithium-ion battery recycling infrastructure”. Resources, Conservation and Recycling, 83: 53-62. [15] Chinyama Luzendu, G. (2016). “Recovery of Lithium from Spent Lithium Ion Batteries”. Division of Minerals and Metallurgical Engineering Department of Civil, Environmental & Natural Resource Engineering Luleå University of Technology Luleå, Sweden. Master's Degree. [16] Zhang, X., Cao, H., Xie, Y., Ning, P., An, H., You, H., and Nawaz, F. (2015) “A closed-loop process for recycling LiNi1/3 Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis”. Separation and Purification Technology, 150: 186-195. [17] Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., and Sun, Z. (2018). “A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries”. ACS Sustainable Chemistry and Engineering, 6: 1504-1521. [18] Swain, B. (2017). “Recovery and recycling of lithium: A review”. Separation and Purification Technology, 172: 388-403. [19] Nayaka, G. P., Pai, K. V., Santhosh, G., and Manjanna, J. (2016). “Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co”. Hydrometallurgy, 161: 54-57. [20] Heydarian, A., Mousavi, S. M., Vakilchap, F., and Baniasadi, M. (2018). “Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries”. Journal of Power Sources, 378: 19-30. [21] Gaines, L. (2014). “The future of automotive lithium-ion battery recycling: Charting a sustainable course”. Sustainable Materials and Technologies, 1: 2-7. [22] Hu, J., Zhang, J., Li, H., Chen, Y., and Wang, C. (2017). “A promising approach for the recovery of high value-added metals from spent lithium-ion batteries”. Journal of Power Sources, 351: 192-199. [23] Nogueira, N. C. A., Guimarães, C., Pereira, M. F. C., Durão, F. O., and Margarido, F. (2018). “Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite”. Waste Management, 71: 350-361. [24] Li, L., Ge, J., Chen, R., Wu, F., Chen S., and Zhang, X. (2010). “Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries”. Waste Management, 30: 2615-2621. [25] Joulié, M., Billy, E., Laucournet, R., and Meyer D. (2017). “Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes”. Hydrometallurgy, 169: 426-432. [26] Sattar, R., Ilyas, S., Bhatti, H. N., and Ghaffar, A. (2019). “Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries”. Separation and Purification Technology, 209: 725-733. [27] Gao, W., Song, J., Cao, H., Lin, X., Zhang, X., Zheng, X., Zhang, Y., and Sun, Z. (2018) “Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation”. Journal of Cleaner Production, 178: 833-845. [28] Golmohammadzadeh, R., Faraji, F., and Rashchi F. (2018). “Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review”. Resources, Conservation and Recycling, 136: 418-435. [29] Pinna, E. G., Ruiz, M. C., Ojeda, M. W., and Rodriguez, M. H. (2017). “Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors”. Hydrometallurgy, 167: 66-71. [30] He, L. P., Sun, S. Y., Mu, Y. Y., Song, X. F., and Yu, J. G. (2017). “Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using l -Tartaric Acid as a Leachant”. ACS Sustainable Chemistry and Engineering, 5: 714-721. | ||
آمار تعداد مشاهده مقاله: 675 تعداد دریافت فایل اصل مقاله: 682 |