تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,639 |
تعداد دریافت فایل اصل مقاله | 2,844,903 |
تعیین میزان آلودگی فلزات سنگین در مناطق معدنی با استفاده از شاخص های فرسایش و رسوب | ||
نشریه مهندسی منابع معدنی | ||
مقاله 2، دوره 5، شماره 3 - شماره پیاپی 17، مهر 1399، صفحه 19-40 اصل مقاله (1.32 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2020.11617.1320 | ||
نویسندگان | ||
محمدصادق موحد1؛ سید حسن طباطبایی* 2؛ مهیار یوسفی3 | ||
1دانشجوی کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان | ||
2دانشیار، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان | ||
3دانشیار، گروه معدن، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر | ||
تاریخ دریافت: 30 شهریور 1398، تاریخ بازنگری: 04 تیر 1399، تاریخ پذیرش: 14 تیر 1399 | ||
چکیده | ||
فلزات سنگین بهدلیل سمیبودن و پایداری در طبیعت، از آلایندههای خطرناک محیط زیست هستند. این فلزات میتوانند با تغییر در خواص شیمیایی رسوبات، فلزات و آلایندهها را به آب روی رسوب خود انتقال دهند و با تحرک دوباره آنها در محیط، بهعنوان منبع آلودگی عمل کنند. در این خصوص معادن فلزی و فعالیتهای معدنی یکی از منابع اصلی آلودگی فلزات سنگین در محیطهای محلی هستند. در مطالعه حاضر بهمنظور ارزیابی سطوح آلودگی فلزات سنگی (Cu، Ni، Cr، Zn، Pb و Mn) از تحلیل دادههای ژیوشیمیایی رسوبات آبراههای ورقه 1:100.000 خوی استفاده شده است. از آنجاکه دادههای رسوب آبراههای، معرف مواد بالادست خود هستند، برای تحلیل بهتر آلودگی از روش حوضه آبریز نمونه (SCB) استفاده و براساس آن، غلظت زمینه محلی ناشی از لیتولوژی به روش میانگین وزندار محاسبه و بهعنوان زمینه در شاخصهای کیفیت رسوب مانند شاخص ضریب آلودگی و شاخص خطر زیستمحیطی استفاده شد. عناصر نیز برای مشارکت در شاخصهای مرکب کیفیت رسوبات، با روشهای آماری چند متغیره مانند ماتریس همبستگی پیرسون، آنالیز فاکتوری و خوشهبندی سلسله مراتبی مورد بررسی قرار گرفتند. مطالعه حوضههای آلوده نشانداد که منابع آلودگی بیشتر بهدلیل خصوصیات زمینشناسی منطقه بوده اما در برخی موارد فعالیتهای معدنی و انسانی در گسترش آلودگی بسیار موثر بودهاند. در گام بعدی برای رتبهبندی مناطق آلوده، دبی رسوب مربوط به هر حوضه محاسبه و با توجه به سطح آلودگی رسوب، پتانسیل تولید حجمی و دبی رسوب، 127 حوضه آلوده Cr و Ni بهروش تاپسیس رتبهبندی شدند. | ||
کلیدواژهها | ||
ورقه 1:100000 خوی؛ رسوبات آبراهه ای؛ حوضه آبریز نمونه؛ روش پتانسیل فرسایش؛ رتبه بندی مناطق آلوده | ||
عنوان مقاله [English] | ||
Determination of Heavy Metal Pollution in Mineral Areas Using Erosion and Sedimentation Indices | ||
نویسندگان [English] | ||
M.S. Movahhed1؛ S.H. Tabatabaei2؛ M. Yousefi3 | ||
1M.Sc Student, Dept. of Mining Engineering, Isfahan University of Technology (IUT), Isfahan, Iran | ||
2Associate Professor, Dept. of Mining Engineering, Isfahan University of Technology (IUT), Isfahan, Iran | ||
3Associate Professor, Dept. of Mining Engineering, Faculty of Engineering, Malayer University, Malayer, Iran | ||
چکیده [English] | ||
Heavy metals are dangerous for our environment due to their toxic and stable behavior in nature. These metals can change the chemical properties of sediments because they move from their sources, i.e., deposition sites, to stream of water. In this regard, mining activities are one of the major sources of heavy metal pollution in environments around the mines. In this study, to evaluate the risk of heavy metals (Cr, Ni, Cr, Zn, Pb&Mn) pollution, a dataset of stream sediment elemental concentration of the 1:100,000 scale Khoy quadrangle map was bult. Due to the fact that the sediment data represent upstream materials of sampling locations, the sample catchment basin method was applied to portray the pollutions. Then uni-element background concentration caused by lithology was calculated by the weighted average method and was applied as a reference value for calculation of sediment quality indices such as Contamination factor, Geoaccumulation index and ecological risk factor. In order to Participation in the Integrated quality indices, the elements with multivariate statistical methods such as Pearson correlation matrix, factor analysis, and hierarchical clustering were investigated. In this research, the study of contaminated basins showed that the sources of contamination were mainly due to the geological features of the area, but in some cases, mineral and human activities were very effective in spreading the contamination. Next, to prioritize the contaminated areas amount sediment discharge was calculated for each basin and according to sediment contamination level, Volumetric production potential and sediment discharge of each basin, those contaminated areas were ranked TOPSIS method. | ||
کلیدواژهها [English] | ||
1:100, 000 scale Khoy quadrangle map, Sample catchment basin, Erosion potential method, Ranking of contaminated areas | ||
مراجع | ||
[1] Omwene, P. I., Öncel, M. S., Çelen, M., and Kobya, M. (2018). “Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world's largest borate basin (Turkey)”. Chemosphere, 208: 782-792. [2] موحد، م.، یوسفی، م.؛ 1398؛ "ارزیابی آلودگی ناشی از فعالیتهای معدنی با استفاده از مطالعات ژئوشیمیایی رسوبات آبراههای". نشریه مهندسی منابع معدنی، دوره 4، شماره 3، ص 41-1.
[3] Patel, P., Raju, N. J., Reddy, B. S. R., Suresh, U., Sankar, D., and Reddy, T. (2018). “Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications”. Environmental Geochemistry and Health, 40(2): 609-623. [4] Weissmannová, H. D., Pavlovský, J., and Chovanec, P. (2015). “Heavy metal contaminations of urban soils in Ostrava, Czech republic: assessment of metal pollution and using principal component analysis”. International Journal of Environmental Research, 9(2): 683-696. [5] Yang, Z., Wang, Y., Shen, Z., Niu, J., and Tang, Z. (2009). “Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China”. Journal of Hazardous Materials, 166(2-3): 1186-1194. [6] کرهای، م.؛ 1383؛ "گزارش بررسی های اکتشافات سیستماتیک ناحیه ای و شناسایی نواحی امید بخش معدنی در زون خوی– اشنویه". سازمان زمینشناسی و اکتشافات معدنی کشور.
[7] حسنزاده، ف.، رحیمیپور، غ.؛ 1391؛ "شناسایی مناطق امیدبخش معدنی با استفاده از اکتشافات ژیوشیمی رسوبات آبراهه ای ورقه 1:100000 خوی". فصلنامه بلور، شماره 31، 61 صفحه.
[8] Bonham-Carter, G., Rogers, P., and Ellwood, D. (1987). “Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia”. Journal of Geochemical Exploration, 29(1-3): 259-278. [9] Bonham-Carter, G., and Goodfellow, W. (1984). “Autocorrelation structure of stream-sediment geochemical data: interpretation of Zn and Pb anomalies, Nahanni River area, Yukon-Northwest Territories, Canada”. Geostatistics for Natural Resources Characterization, 2: 817-829. [10] Carranza, E. J. M. (2008). “Geochemical anomaly and mineral prospectivity mapping in GIS”. Elsevier, 11: pp. 368. [11] Hakanson, L. (1980). “An ecological risk index for aquatic pollution control. A sedimentological approach”. Water Research, 14(8): 975-1001. [12] Muller, G. (1969). “Index of geoaccumulation in sediments of the Rhine River”. Geojournal, 2: 108-118. [13] Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., and Liqiang, Y. (2008). “Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing”. Journal of China University of Geosciences, 19(3): 230-241. [14] Ownegh, M. (2003). “Land use planning and integrated management of natural hazards in Golestan Province”. In Seminar on Flood Hazard Prevention and Mitigation, 15-16. [15] Turner, B., Clark, W. C., Kates, R. W., Richards, J. F., Mathews, J., and Meyer, W. (1990). “The Earth as Transformed by Human Action Cambridge”. In Cambridge University Press. [16] Spalevic, V., Mahoney, W., Djurovic, N., ÜZEN, N., and Curovic, M. (2012). “Calculation of soil erosion intensity and maximum outflow from the Rovacki River Basin, Montenegro”. Agriculture & Forestry/Poljoprivreda i Sumarstvo, 58(3): 7-21. [17] رفاهی، ح.؛ 1396؛ "فرسایشآبی و کنترل آن". موسسه چاپ و انتشارات دانشگاه تهران، ص 230-150.
[18] حسنیپاک، ع.، شرفالدین، م.؛ 1380؛ "تحلیل دادههای اکتشافی". انتشارات دانشگاه تهران، ص 130-50.
[19] Jamshidi-Zanjani, A., and Saeedi, M. (2017). “Multivariate analysis and geochemical approach for assessment of metal pollution state in sediment cores”. Environmental Science and Pollution Research, 24(19): 16289-16304. [20] سازمان حفاظت محیط زیست؛ 1392؛ "استانداردهای کیفیت منابع خاک و راهنماهای آن".
[21] Weissmannová, H. D., and Pavlovský, J. (2017). “Indices of soil contamination by heavy metals–methodology of calculation for pollution assessment (minireview)”. Environmental Monitoring and Assessment, 189(12): 616. [22] خدادادی، ف.، فضلنیا، ع.، پیرخراطی، ح.؛ 1392؛ "بررسی میزان آلودگی فلزات سنگین کروم، کبالت،نیکل و منگنز و پهنه بندی آنها در آبخوانهای شمال و شمال غرب خوی (زورآباد) توسط نرمافزار GIS". رسوب شناسی کاربردی، شماره 1، ص 95-44.
[23] Barzegar, R., Moghaddam, A. A., Adamowski, J., and Nazemi, A. H. (2019). “Assessing the potential origins and human health risks of trace elements in groundwater: A case study in the Khoy plain, Iran”. Environmental Geochemistry and Health, 41(2): 981-1002. [24] Amini, S., Rafiei, B., Khodabakhsh, S., and Heydari, M. (2010). “Estimation of erosion and sediment yield of Ekbatan Dam drainage basin with EPM, using GIS”. Iranian Journal of Earth Sciences, 2(2): 173-180. | ||
آمار تعداد مشاهده مقاله: 534 تعداد دریافت فایل اصل مقاله: 759 |