تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,141 |
تعداد مشاهده مقاله | 4,265,805 |
تعداد دریافت فایل اصل مقاله | 2,860,037 |
بررسی کاهش میزان گوگرد کنسانتره منتیتی کارخانه تغلیظ سنگ آهن همدان | ||
نشریه مهندسی منابع معدنی | ||
مقاله 6، دوره 5، شماره 4 - شماره پیاپی 18، دی 1399، صفحه 95-110 اصل مقاله (917.69 K) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2020.11636.1321 | ||
نویسندگان | ||
رامین حق محمدی پسند1؛ جواد وظیفه مهربانی* 2؛ پرویز پورقهرمانی3 | ||
1کارشناسی ارشد، گروه مواد معدنی، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز | ||
2استادیار، گروه مواد معدنی، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز | ||
3استاد، گروه مواد معدنی، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز | ||
تاریخ دریافت: 01 مهر 1398، تاریخ بازنگری: 25 شهریور 1399، تاریخ پذیرش: 25 شهریور 1399 | ||
چکیده | ||
در این تحقیق، امکان کاهش گوگرد موجود در کنسانتره نهایی آهن واحد تغلیظ باباعلی همدان مورد بررسی قرار گرفت. وقتی کانسنگ ورودی به کارخانه از معدن گلالی خوراکدهی میشود، مقدار گوگرد در کنسانتره نهایی بالاتر از حد مجاز است و در برخی شرایط، عیار آن از 3/2درصد نیز تجاوز میکند. بررسیها نشان داد که حدود 47درصد گوگرد موجود در خوراک کارخانه، به کنسانتره نهایی آهن راه مییابد و منبع اصلی آن، کانی سولفیدی پیروتیت و بهمقدار جزیی، کانی پیریت درگیر در ابعاد بزرگتر از 75 میکرون است. آزمایشهای مغناطیسی اولیه انجامگرفته با استفاده از دستگاه دیویس تیوب نشان داد که با کاهش شدت میدان مغناطیسی و خردایش بیشتر، 32 درصد از گوگرد موجود در کنسانتره حذف و عیار گوگرد در کنسانتره به 7/1درصد میرسد. ولی در این شرایط، آهن بیشتری هدر میرود. در ادامه، آزمایشهای شناورسازی کانیهای سولفیدی در شرایط مختلف با استفاده از فلوتاسیون انجام گرفت. نتایج آزماشها نشان داد که مقدار مصرف کلکتور، فعالکننده و واکنش بین آنها، بیشترین تاثیر را در فلوتاسیون پیروتیت از کنسانتره منتیتی دارند. شرایط بهینه آزمایشها در حضور 1100 گرم برتن کلکتور پتاسیم امیل گزنتات، 200 گرم بر تن فعالکننده سولفات مس، pH=6، درصد جامد فلوتاسیون 45درصد و ترکیب کفساز MIBCو A65( با نسبت مساوی) به مقدار 130 گرم برتن حاصل شد که در این شرایط بیش از 98 درصد گوگرد از کنسانتره منتیتی حذف شده و عیار گوگرد از 3/2درصد در کنسانتره اولیه به 04/0 درصد کاهش یافت. | ||
کلیدواژهها | ||
کنسانترهی منتیتی؛ گوگرد؛ فلوتاسیون؛ پیروتیت | ||
عنوان مقاله [English] | ||
An Investigation on Removing Sulfur from Hamadan Magnetite Concentrate | ||
نویسندگان [English] | ||
R. Haghmohamadipasan1؛ J. Vazifeh Mehrabani2؛ P. Pourghahramani3 | ||
1M.Sc, Dept. of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran | ||
2Assistant Professor, Dept. of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran | ||
3Professor, Dept. of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran | ||
چکیده [English] | ||
In the concentration plant of Hamadan, magnetite concentrate is produced by low intensity magnetic separators (LIMS). As a result, 47% of feed sulfur was recovered in magnetite concentrate, keeping sulfur at higher content than that is commercially desired. Mineralogical investigations revealed that Pyrrhotite and Pyrite are the most abundant sulfur minerals, respectively. Davis Tube investigations indicated that by decreasing magnetic field intensity and particles size, sulfur content in magnetite concentrate could be decreased to 1.7%, which is still much more than desired. Further investigations were performed using flotation method and based on statistical design. Modelling and analysis of design data revealed that the dosage of collector and activator and their interaction have statistically significant effects on the process with 95% confidence level. İt was found that the optimum condition of removing sulfur would be achieved using 1100 g/t of Potassium amyl xanthate (collector), 200 g/t of copper sulfate (activator), 65 of g/t MIBC and 65 g/t of A65 (frothers), at pH=6 and solid percent of 45%. At the given condition, 98% of sulfur in magnetite concentrate (2.3% sulfur) was successfully removed and the product with 0.04% sulfur was obtained. | ||
کلیدواژهها [English] | ||
Magnetite concentrate, Sulfur, Flotation, Pyrrhotite | ||
مراجع | ||
[1] Devaney, F. D. (1985). “Iron ore” .Edited by: Weiss, N. L., SME Mineral Processing Handbook, Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Section 20, 2-3. [2] Soltanmohamadi, V., Noaparat, M., Kohsari, A. H., and Zamani, F. (2011). “Influence of flotation parameters on decreasing sulfur and phosphorus content in the Gole-gohar iron ore concentrate”. Physicochemical Problems of Mineral Processing, 46: 173-190. [3] Norrgran, D. A., and Mankosa, M. J. (2002). “Bench Scale and Pilot Plant Tests for Magnetic Concentration Circuit Design”. Edited by: Mular, A. L, Haibe, D. N., and Barrett, D. J., Mineral Processing plant design, 1: 176-177. [4] Manouchehri, H. R. (2014). “Pyrrhotite flotation and its selectivity against pentlandite in the beneficiation of nickeliferous ores: An electrochemistry perspective”. Minerals & Metallurgical Processing, 31: 115-125. [5] ارغوانی، ا.، حجتی، ا.، بنیسی، ص.؛ 1394؛ "کاهش میزان سولفورکنسانتره با بهبود کارآیی مدار آسیا تر کارخانه فرآوری مجتمع سنگآهن گل گهر". نشریه علمی پژوهشی مهندسی معدن ایران، دوره 10، شماره 27، ص67-61. [6] He, M. F., Qin, W. Q., Li, W. Z., and Jiao, F. (2012). “Flotation performance of polymorphic pyrrhotite”. Journal of Central South University, 19: 238-243. [7] Allison, S. A., and O’Connor, C. T. (2011). “An investigation into the flotation behaviour of pyrrhotite”. International Journal of Mineral Processing, 98: 202-207. [8] Yu J., Ge,Y., and Cai, X. (2016). “The Desulfurization of Magnetite Ore by Flotation with a Mixture of Xanthate and Dixanthogen”. Minerals, 6: 1-13. [9] Arvidson, B., Klemetti, M., Knuutinen, T., Kuusisto, M., Man,Y. T., and Hughes-Narborough, C. (2013). “Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w”. Minerals Engineering, 50-51: 4-12. [10] Faraj, H., Taheri, B., and Abdollahzadeh, A. A. (2017). “Desulfurization of the Gole Gohar iron ore by controlling the electrochemical conditions of pulp”. Iranian Journal of Mining Engineering, 12: 27-34. [11] Miller Li, J. D., Davidtz, J. J. C., and Vos, F. (2005). “A review of pyrrhotite flotation chemistry in the processing of PGM ores”. Minerals Engineering, 18: 855-865. [12] Adam, K., and Iwasaki, I. (1984). “Pyrrhotite grinding media interaction and its effect on floatability at different applied potentials”. Minerals and Metallurgical Processing, 1(1): 81-87. [13] Adam, K., Natarajan, K. A., and Iwasaki, I. (1984). “Grinding media wear and its effect on the flotation of sulphide minerals”. International Journal of Mineral Processing 12: 39-54. [14] Nicholson, R. V., and Scharer, J. M. (1994). “Laboratory studies of pyrrhotite oxidation kinetics”. In Alpers, C. N., and Blowes, D. W. (Eds.), Environmental Geochemistry of Sulphide Oxidation, ACS Symposium Series, Washington, DC, 550: 14-30. [15] Belzile, N., Chen, Y. W., Cai, M. F., and Li, Y. (2004). “A review on pyrrhotite oxidation”.Journal of Geochemical Exploration, 84: 65-76. [16] Qi, C., Liu, J., Malainey, J., Kormos, L. J., Coffin, J., Deredin, C., Liu, Q., and Fragomeni, D. (2019). “The role of Cu ion activation and surface oxidation for polymorphic pyrrhotite flotation performance in Strathcona Mill”. Minerals Engineering, 134: 87-96. [17] Bultovich, S. M. (2010). “Handbook of flotation reagent”. Elsevier, Amsterdam, 2: 19- 26. [18] Fuerstenau, M. C., Jameson, G., and Yoon, R. H. (2007). “Froth flotation , A century of innovation”. SME, 23-24. [19] Chandra, A. P., and Gerson, A. R. (2009). “A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite”. Advances in Colloid and Interface Science, 145: 97-110. [20] Leppinen, J. O.(1990). “FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals”. International Journal of Mineral Processing, 30(3-4): 245-263. [21] Chang, C. S., Cooke, S. R. B., and Iwasaki, I. (1954). “Flotation characteristics of pyrrhotite with xanthate”. Transactions AIME, Mining Engineering, 199: 209-217. [22] Liu, J., Li, E. L., Jiang, K., Li, Y.J., and Han, Y. (2018). “Effect of acidic activators on the flotation of oxidized pyrrhotite”. Minerals Engineering, 120: 75-79. [23] Rezaee, B., Sarvi, A., Eslamian, A., Jebraeeli, S. M., and Zabihi, A. (2017). “Sulfur reduction in Sangan iron ore by flotation”. MEC, E3S Web of Conferences, 18: 1-4. [24] Noiranta, G., Benzaazouaa, M., Kongoloa, M., Bussièrea, B., and Frenetteb, K. (2019). “Alternatives to xanthate collectors for the desulphurization of ores and tailings: Pyrite surface chemistry”. Colloids and Surfaces Colloids and Surfaces, 577: 333-346. [25] کردستانی، م.، سام، ع.، اربابیان، م. ع.؛ 1991؛ "تعیین شرایط بهینه فلوتاسیون، جهت طراحی مدار سولفور و کلر زدایی از کنسانتره تر کارخانه منتیت مجتمع معدنی و صنعتی گلگهر". اولین کنفرانس فناوریهای معدنکاری، دانشگاه یزد، 6 صفحه. [26] حقمحمدی پسند، ر.؛ 1396؛ "کاهش سولفور موجود در کنسانتره کارخانه همدان به روش فلوتاسیون". پایاننامه کارشناسی ارشد، دانشگاه صنعتی سهند تبریز. [27] Rosenblum, S., and Brownfield, I. K. (2000). “Magnetic Susceptibilities of Minerals”. U.S. Department of the Interior, U.S. Geological Survey. | ||
آمار تعداد مشاهده مقاله: 637 تعداد دریافت فایل اصل مقاله: 933 |