تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,141 |
تعداد مشاهده مقاله | 4,265,981 |
تعداد دریافت فایل اصل مقاله | 2,860,244 |
مدلسازی پتانسیل معدنی ذخایر کرومیت انبانهای در کمربند افیولیتی جنوب نیشابور با تحلیل مولفههای مستقل | ||
نشریه مهندسی منابع معدنی | ||
مقاله 1، دوره 5، شماره 4 - شماره پیاپی 18، دی 1399، صفحه 1-20 اصل مقاله (1.45 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2020.12185.1348 | ||
نویسندگان | ||
حامد فضلیانی1؛ ابوالقاسم کامکار روحانی* 2؛ علیرضا عرب امیری2 | ||
1دانشجوی دکتری، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود | ||
2دانشیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود | ||
تاریخ دریافت: 18 آذر 1398، تاریخ بازنگری: 25 شهریور 1399، تاریخ پذیرش: 25 شهریور 1399 | ||
چکیده | ||
آنالیز مولفههای مستقل (ICA) یک روش آماری چندمتغیره نسبتا جدید است که ابتدا برای مساله جداسازی کور منابع(BSS) و زمانیکه هیچ اطلاعاتی درباره نحوه اختلاط منابع اولیه(سیگنالهای مختلطشده) وجود ندارد و تنها شرط لازم استقلال آماری آنها است، ابداع شد. شرایطی مشابه مدلسازی پتانسیل معدنی که در آن برآیند فرآیندهای مستقل کانیزایی بهصورت متغیرهای مشاهدهشدهای همچون اطلاعات ژیوفیزیکی و ژیوشیمیایی در اختیار ما قرار میگیرد و ما اطلاعی درباره نحوه اختلاط آثار ژیوفیزیکی و ژیوشیمیایی کانیزاییهای مختلف نداریم. در این مطالعه سعی برآن بوده است که روش تجزیه مولفههای مستقل بهعنوان یک روش دانشمحور مدلسازی پتانسیل معدنی معرفی شود. بهاین منظور ناحیهای به وسعت 4800 کیلومتر مربع در جنوب نیشابور، شمال شرق ایران، برای تهیه نقشه پتانسیل معدنی ذخایر کرومیت انبانهای مورد بررسی قرار گرفت. همچنین، برای انجام این مطالعه از دادههای ژیوشیمی رسوبات آبراههای، نقشه رخسارههای افیولیتی، الگوی شکستگیهای ناحیهای و محدوده آلتراسیونهای سرپانتینی موجود در منطقه، استفاده شد. نهایتا نتایج مدلسازی پتانسیل معدنی بهروش تجزیه مولفههای مستقل با نتایج مطالعات ژیوشیمیایی تکمتغیره و چندمتغیره مقایسه و بهروش تشخیص عملکرد نسبی(ROC) و با استفاده از موقعیت اندیسهای شناختهشده موجود در منطقه، اعتبارسنجی شد. در این بررسی مساحت زیر نمودار ROC ، برابر با 967/0 بود که نشاندهنده عملکرد بسیار مطلوب مدلسازی انجامشده میباشد. | ||
کلیدواژهها | ||
تجزیه مولفههای مستقل؛ مدلسازی پتانسیل معدنی؛ ذخایر کرومیت انبانهای؛ کمربند افیولیتی جنوب نیشابور | ||
عنوان مقاله [English] | ||
Mineral Potential Modeling of Podiform Chromite Deposits in the South Neyshabur Ophiolitic Belt Using Independent Component Analysis | ||
نویسندگان [English] | ||
H. Fazliani1؛ A. Kamkar-Rouhani2؛ A.R. Arab-Amiri2 | ||
1Ph.D Student, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran | ||
2Associate Professor, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran | ||
چکیده [English] | ||
Independent component analysis (ICA) is a relatively new multivariable statistical method originally devised for the blind source separation (BSS) problem, where there is no information on how to mix primary sources (mixed signals) and only the necessary condition is independence of the primary signals. Hence, ICA can be used in mineral potential modeling where several independent mineralization processes result in observed variables such as geophysical and geochemical information, and we do not know how the geophysical and geochemical effects of different mineralization processes are mixed together. In this study, we tried to introduce the ICA method as a knowledge-driven method of mineral potential modeling. To this end, an area of 4800 square kilometers in south of Neyshabur, northeast of Iran, was investigated to map the mineral potential of podiform chromite deposits. In this regard, geochemical stream sediment sampling data, ophiolitic facies map, structural pattern of fractures and serpentinite alteration location in the region were used for this study. Finally, the results of mineral potential modeling by the ICA method were compared with the results of univariate and multivariate geochemical studies and were also validated by using locations of the known mineral prospects in the region and receiver operating characteristic (ROC) method. As a result, the area under the ROC curve was marked by 0.967, indicating the outstanding performance of the ICA modeling. | ||
کلیدواژهها [English] | ||
Independent component analysis (ICA), Mineral potential modeling, Podiform chromite deposits, South Neyshabur ophiolitic belt | ||
مراجع | ||
[1] Prichard, H. M., Neary, C. R., Fisher, P. C., and O’hara, M. J. (2008). “PGE-rich podiform chromitites in the Al ‘Ays ophiolite complex, Saudi Arabia: an example of critical mantle melting to extract and concentrate PGE”. Economic Geology, 103: 1507-1529. [2] Yaghubpur, A., and Hassan Nejad A. A. (2006). “The spatial distribution of some chromite deposits in Iran, Using Fry Analysis”. Journal of Sciences, Islamic Republic of Iran, 17(2): 147-152. [3] Mosier, D. L., Singer, D. A., Moring, B. C., and Galloway, J. P. (2012). “Podiform chromite deposits database and grade and tonnage models”. U.S. Geological Survey Scientific Investigations Report 2012-5157, pp. 45. [4] Cardoso, J. F. (1997). “Infomax and maximum likelihood for source separation”. IEEE Letters on Signal Processing, 4: 112-114. [5] Hyvärinen, A., and Oja, E. (2000). “Independent component analysis: algorithms and applications”. Neural Networks, 13(4-5): 411-430. [6] Pu, Q., and Yang, G. (2006). “Short-text classification based on ICA and LSA”. In International Symposium on Neural Networks, 265-270. [7] Chen, C., and Zhang, X. (1999). “Independent component analysis for remote sensing study”. Image and Signal Processing for Remote Sensing, 3871: 150-158. [8] Lee, T., and Lewicki, M. (2002). “Unsupervised image classification, segmentation, and enhancement using ICA mixture models”. IEEE Transactions on Image Processing, 11(3): 270-279. [9] Bartlett, M., Movellan, J., and Sejnowski, T. (2002). “Face recognition by independent component analysis”. IEEE Transactions on Neural Networks, 13(6): 1450-1464. [10] Acernese, F., and Ciaramella, A. M. S. (2003). “Neural networks for blind-source separation of Stromboli explosion quakes”. IEEE Transactions on Neural Networks, 14(1): 167-175. [11] Iwamori, H., and Albare`de, F. (2008). “Decoupled isotopic record of ridge and subduction zoneprocesses in oceanic basalts by independent component analysis”. Geochemistry Geophysics Geosystems, 9(4): 95-110. [12] Iwamori, H., Albare`de, F., and Nakamura, H. (2010). “Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection”. Earth and Planetary Science Letters, 299(3): 339-351. [13] Yu, X., Liu, L., Hu, D., and Wang, Z. (2012). “Robust Ordinal Independent Component Analysis (ROICA) applied to mineral resources prediction”. Journal of Jilin University (Earth Science Edition), 42(3): 872-880. [14] Yu, X., Liu, S., Ren, J., Zhang, T., Yu, X., Liu, S., Ren, J., and Zhang, T. (2007). “Robust fast independent component analysis applied to mineral resources prediction”. Proceedings of the IAMG 07, Beijing, China, 94-97. [15] Gholami, R., Moradzadeh, A., and Yousefi, M. (2012). “Assessing the Performance of Independent Component Analysis in Remote Sensing Data Processing”. Journal of the Indian Society of Remote Sensing, 40(4): 577-588. [16] Yang, J., and Cheng, Q. (2015a). “A comparative study of independent component analysis with principal component analysis in geological objects identification, Part I: Simulations”. Journal of Geochemical Exploration, 149: 127-135. [17] Yang, J., and Cheng, Q. (2015b). “A comparative study of independent component analysis with principal component analysis in geological objects identification, Part II: A case study of Pinghe District, Fujian, China”. Journal of Geochemical Exploration, 149: 136-146. [18] Comon, P. (1994). “Independent component analysis, a new concept?”. Signal Processing, 36: 287-314. [19] Jutten, C. and Hérault, J. (1991). “Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture”. Signal Processing, 24: 1-10. [20] Kim, D., and Kim, S. k. (2012). “Comparing patterns of component loadings: Principal Component Analysis (PCA) versus Independent Component Analysis (ICA) in analyzing multivariate non-normal data”. Behavior Research Methods, 44:1239-1243 [21] Pearlmutter, B. A. and Parra, L. C. (1997). “Maximum likelihood blind source separation: A context-sensitive generalization of ICA”. Advances in Neural Information Processing Systems, 9: 613-619. [22] Pham, D. T., Garrat, P., and Jutten, C. (1992). “Separation of a mixture of independent sources through a maximum likelihood approach”. European Signal Processing Conference, 771-774. [23] Calhoun, V. D., Adali, T., Hansen, L. K., Larsen, J., and Pekar, J. J. (2003). “ICA of Functional MRI Data: AN Overview”. Neuroimage, 15: 875-885. [24] Hyvärinen, A., and Oja, E. (1997). “A fast fixed-point algorithm for independent component analysis”. Neural Computation, 9(7): 1483-1492. [25] Tichavsk, P., Koldovsk, Z., and Oja, E. (2006). “Performance analysis of the FastICA algorithm and Crame´ r-rao bounds f1or linear independent component analysis”. Signal Processing, IEEE, 54(4): 1189-203. [26] Bell, A., and Sejnowski, T. J. (1995). “An information-maximization approach to blind separation and blind deconvolution”. Neural Computation, 7(6): 1129-1159. [27] Beckmann, C. F., and Smith, S. M. (2004). “Probabilistic independent component analysis for functional magnetic resonance imaging”. IEEE Transactions on Medical Imaging, 23(2): 137-152. [28] Lin, Q. H., Zheng Y. R., Yin, F. L., Liang, H., and Calhoun, V. D. (2007). “A fast algorithm for one-unit ICA-R”. Information Sciences, 177: 1265-1275. [29] Hyvärinen, A. (1998). “New approximations of differential entropy for independent component analysis and projection pursuit”. In Advances in Neural Information Processing Systems, MIT Press, 273-279. [30] Hyvärinen, A. (1999). “Fast and robust fixed-point algorithms for independent component analysis”. IEEE Transactions on Neural Networks, 10(3): 626-634. [31] Dezhong, H., Delian, L., and Shuigen, X. (1995a). “Explanatory text of geochemical map of Kadkan, stream sediment survey”. Geological Survey of Iran Press. [32] Dezhong, H., Delian, L., and Shuigen, X. (1995b). “Explanatory text of geochemical map of Shamkan, stream sediment survey”. Geological Survey of Iran Press. [33] نادری میقان، ن.؛ 1377 الف؛ "نقشه زمینشناسی 1:100000 شامکان". سازمان زمینشناسی و اکتشافات معدنی ایران. [34] نادری میقان، ن.؛ 1377 ب؛ "نقشه زمینشناسی 1:100000 کدکن". سازمان زمینشناسی و اکتشافات معدنی ایران. [35] Carranza, E. J. M. (2008). “Geochemical anomaly and mineral prospectivity mapping in GIS, handbook of exploration and environmental geochemistry”. Elsevier, Amsterdam, 11:. [36] Sabins, F. F. (1999). “Remote sensing for mineral exploration”. Remote Sensing Enterprises, 1724 Celeste Lane, Fullerton, CA 92833, USA. [37] Rajendran, S., Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A., Kusky, T., and Ghlam, A. (2012). “Aster detection of chromite bearing mineralized zones is Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy”. Ore Geology Reviews, 44: 121-135. [38] Volesky, J. C., Stern, R. J., and Johnson, P. R. (2003). “Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies”. Precambrian Research, 123: 235-247. [39] Stern, R. J. (1999). “Mineral exploration with satellite remote sensing imagery: examples from the Neoproterozoic Arabian-Nubian Shield”. 11th International Conference of the Geological Society of Africa, 115-124. [40] Schuiling, R. D. (2011). “Troodos: a giant serpentinite diaper”. International Journal of Geosciences, 2: 98-101. [41] Roshanravan, B., Aghajani, H., Yousefi, M., and Kreuzer, O. (2019). “Particle Swarm Optimization Algorithm for Neuro-Fuzzy Prospectivity Analysis Using Continuously Weighted Spatial Exploration Data”. Natural Resources Research, 28: 309-325. [42] Hardcastle, K. C. (1995). “Photolineament Factor: A new computer - aided method for remotely sensing the degree to which bedrock is fractured”. Photogrammetric Engineering & Remote Sensing, 61(6): 739-747. [43] Beus, A. A., and Gregorian, S. V. (1975). “Geochemical exploration methods for mineral deposits”. Applied Pub. Ud, Wilmette. [44] Constantinou, G. (1980). “Metallogenesis associated with Troodos ophiolite. In Panayiotou, A. (Ed.), Ophiolites”. International Ophiolite Symposium, Nicosia, Cyprus, 663-674. [45] Whittaker, P. J. (1986). “Chromite deposits in Ontario”. Ontario Ministry of Northern Development and Mines. [46] Beqiraj, A., Masi, U., and Violo, M. (2000). “Geochemical characterization of podiform chromite ores from the ultramafic massif of Bulqiza (Eastern Ophiolitic Belt, Albania) and hints for exploration”. Exploration and Mining Geology, 9: 149-156. [47] Navidi, A., Ziaii, M., Afzal, P., Yasrebi, A. B., Wetherelt, A., and Foster, P. (2014). “Determination of Chromites Prospects Using Multifractal Models and Zonality Index in the Parang 1: 100000 Sheet, Iran”. Universal Journal of Geoscience, 2: 133-139. [48] Roshanravan, B., Aghajani, H., Yousefi, M., and Kreuzer, O. (2019). “Mineral Prospectivity Mapping For Podiform Chromite Deposits Using Continuously-Weighted Evidence Maps in Sabzevar Ophiolitic Belt”. Journal of Mineral Resources Engineering. 4(1): 1-19. [49] Wells, F. G., Cater, F. W., and Rynearson, G. A. (1946). “Chromite deposits of Del Norte County, California”. California Division of Mines Bulletin, 134: 1-76. [50] Paktunc, A. D. (1990). “Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle”. Ore Geology Reviews, 5: 211-222. [51] Lipin, B. R. (1984). “Chromite from the Blue Ridge Province of North Carolina”. American Journal of Science, 284: 507-529. [52] Abrams, M. J., Rothery, D. A., and Pontual, A. (1988). “Mapping in the Oman Ophiolite using enhanced Landsat Thematic Mapper images”. Tectonophysics, 151: 387-401. [53] فضلیانی، ح.، رحیمی پور، غ. ر.، رنجبر، ح.؛ 1386؛ "بررسی منطقه بندی نواحی معدنی ورقههای کدکن و شامکان با استفاده از دادههای ژئوشیمی آبراهه ای". بیست و ششمین گردهمایی علوم زمین، سازمان زمینشناسی و اکتشافات معدنی کشور، تهران. [54] دری، م. ب.، صادقی، خ.؛ 1377؛ "گزارش اکتشافات چکشی ورقه زمینشناسی 1:100000 کدکن". سازمان زمینشناسی و اکتشافات معدنی ایران. [55] حیدری، ا.، مناف نژاد، م. ص.؛ 1378؛ "گزارش اکتشافات چکشی ورقه زمینشناسی 1:100000 شامکان". سازمان زمینشناسی و اکتشافات معدنی ایران. [56] عزمی، ح.؛ 1389؛ "پی جویی مواد معدنی در مساحت 500 کیلومتر مربع در نقاط مختلف استان خراسان رضوی". سازمان زمینشناسی و اکتشافات معدنی ایران. [57] Swets, J. A. (1988). “Measuring the accuracy of diagnostic systems”. Science, 240: 1285-1293. [58] Fawcett, T. (2006). “An introduction to ROC analysis”. Pattern Recognition Letters, 27: 861-874. [59] Provost, F., Fawcett, T., and Kohavi, R. (1998). “The case against accuracy estimation for comparing inductionalgorithms”. 15th International Conference on Machine Learning, 445-453. [60] Swets, J. A., Dawes, R. M., and Monahan, J. (2000). “Better decisions through science”. Scientific American, 283: 82-87. [61] Romer, C., and Ferentinou, M. (2016). “Shallow landslide susceptibility assessment in a semiarid environment - A Quaternary catchment of KwaZulu-Natal, South Africa”. Engineering Geology, 201: 29-44. [62] Chen, Y., and Wu, W. (2016). “A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis”. Ore Geology Reviews, 74: 26-38. [63] Nykänen, V., Lahti, I., Niiranen, T., and Korhonen, K. (2015). “Receiver operating characteristics (ROC) as validation tool for prospectivity models - a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland”. Ore Geology Reviews, 71: 853-860. [64] Sun, T., Chen, F., Zhong, L., Liu, W., and Wang, Y. (2019). “GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China”. Ore Geology Reviews, 109: 26-49. | ||
آمار تعداد مشاهده مقاله: 435 تعداد دریافت فایل اصل مقاله: 616 |