تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,131 |
تعداد مشاهده مقاله | 4,251,815 |
تعداد دریافت فایل اصل مقاله | 2,846,181 |
تعیین ابعاد بهینه بلوک ها در ارزیابی ذخیره کانسار سرب و روی کوشک با روش های شبیه سازی و کریجینگ شاخص | ||
نشریه مهندسی منابع معدنی | ||
مقاله 1، دوره 6، شماره 2 - شماره پیاپی 20، تیر 1400، صفحه 1-13 اصل مقاله (1.07 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2020.10545.1257 | ||
نویسندگان | ||
ریحانه السادات بهشتی1؛ فرهاد محمدتراب* 2 | ||
1دانشجوی کارشناسی ارشد، گروه اکتشاف، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد | ||
2دانشیار، گروه اکتشاف، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد | ||
تاریخ دریافت: 07 اردیبهشت 1398، تاریخ بازنگری: 30 شهریور 1399، تاریخ پذیرش: 30 شهریور 1399 | ||
چکیده | ||
در این مطالعه به روش انتخاب ابعاد بهینه برای مدلسازی بلوکی و نقش ابعاد بلوک در تخمین ذخیره پرداخته و به این منظور از دادههای معدن سرب و روی کوشک استفاده شده است. پایگاه داده با اطلاعات گمانهها ساخته، کمپوزیتهایی با طولهای 2 متری تهیه و با استفاده از تبدیل به روش امتیاز نرمال توزیع دادهها نرمال شد. همچنین از واریوگرافی برای شناخت پیوستگی ماده معدنی استفاده شد و بهترین واریوگرام و بیضوی انیزوتروپی به دست آمد. برای ابعاد بلوکی مختلف روش شبیهسازی شرطی گوسی استفاده و در هر شبیهسازی 20 تحقق ایجاد و واریانس بین آنها محاسبه شد. واریانس کمتر به منزله شباهت بیشتر تحققهاست که ملاک انتخاب ابعاد بهینه قرار گرفت. به دلیل پیچیدگی در شکل و وجود حفاریهای زیاد در بخش روباز و زیرزمینی و برای ساخت شکل ماده معدنی و تعیین مرز باطله از روش کریجینگ شاخص استفاده شد. با این روش ابعاد 5/7×10×10 متر برای معدن کوشک محاسبه شد. ابعاد بلوکی به دست آمده تطابق مناسبی با نسبتهای انیزوتروپی داشته بنابراین بر این اساس ابعاد بهینه حاصل برای محاسبه ذخیره انتخاب شد. ذخیره محاسبه شده با ابعاد به دست آمده از روش شبیهسازی با عیار حد مجموع سرب و روی 3 درصد حدود 12/39 میلیون تن برآورد شد که مطابقت خوبی با مقدار گزارش شده از پایگاه ملی دادههای علوم زمین کشور دارد. | ||
کلیدواژهها | ||
مدل بلوکی؛ ابعاد بلوک؛ شبیه سازی شرطی گوسی؛ کریجینگ شاخص | ||
عنوان مقاله [English] | ||
Optimum Block Size Determination in Kushk Lead and Zinc Ore Deposit Evaluation Using Simulation and Indicator Kriging Methods | ||
نویسندگان [English] | ||
R. Beheshti Bafqi1؛ F.M. Torab2 | ||
1M.Sc Student, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran | ||
2Associate Professor, Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran | ||
چکیده [English] | ||
In this research, the optimum block size determination method and its influence on reserve estimation were investigated. For this purpose, the Kushk lead and zinc deposit data were used as case study. The database was built using borehole data and the composite samples were prepared with a 2m length. The data was transformed to Gaussian distribution by normal score transformation method. Variography was used for identification of variability and continuity of the ore, and the best variogram models and anisotropy ellipsoids were fitted. Due to ore complexity and density of boreholes in open pit and undergrounds, indicator kriging method was used for orebody modeling and ore-waste boundary determination. Considering different block size, the lead and zinc grade variability was modeled by sequential Gaussian simulation method. In each block size simulation, 20 realizations were determined and the variances between realizations were calculated. The lower variance is accordance with more similarity of realizations which was selected as a criterion of optimum block size determination. With this method, the optimum block size of Kushk deposit was determined as 10x10x7.5 m. The optimum block size is relatively accordance with the anisotropy ratio at the deposit, therefore it was chosen as suitable block size for reserve estimation of the deposit. By this optimum block size, and considering a 3% cut off grade for sum of lead and zinc, the reserve of the deposit was calculated about 39.12 million tons. | ||
کلیدواژهها [English] | ||
Block model, Block size, Guassian conditional simulation, Indicator kriging | ||
مراجع | ||
[1] Journel, A. G., and Huijbregts, Ch. J. (1978). “Mining geostatistics”. Academic Press, pp. 600. [2] David, M. (1979). “Grade and tonnage problems”. Computers Method for the 80s in the Mineral Industry, In: Weiss A. (Ed), New York, 170-189. [3] Armstrong, M., and Champigny, N. (1989). “A study on kriging small blocks”. Canadian Mining and Metallurgical Bulletin, 82: 128-133. [4] Hulse, D. E. (1992). “The consequence of block size decisions by ore body modeling”. The 23rd International Symposium on the Application and Operation Research in the Mineral Industry (APCOM23), 225-232. [5] Farrelly, C. T., and Dimitrakopoulos, R. (2002). “Recoverable reserves and support effects when optimizing open pit mine design”. International Journalof Surface Mining Reclamation and Environment, 16(3): 217-229. [6] Hekmat, A., Osanloo, M., and Moarefvand, P. (2013). “Block size selection with the objective of minimizing the discrepancy in real and estimated block grade”. ArabianJournal of Geosciences, (6): 141-155. [7] Hayati, M., Rajabzadeh, R., and Darabi, M. (2015). “Determination of optimal block Size in angouran mine using VIKOR method”. Journal of Materials and Environmental Science, 6(11): 3236-3244. [8] مهرابی، ب.؛ 1370؛ "کانی شناسی و ژنز کانسار سرب و روی کوشک (بافق)". پایاننامه کارشناسی ارشد. دانشگاه تربیت معلم تهران، 215 صفحه. [9] مدنی، ح.؛ 1373؛ "مبانی زمین آمار". انتشارات دانشگاه صنعتی امیرکبیر، 659 صفحه. [10] حسنی پاک، ع. ا.، شرف الدین، م.؛ 1384؛ "تحلیل دادههای اکتشافی". انتشارات دانشگاه تهران، 1010 صفحه. [11] Rossi, E. M., and Deutsch, C. V. (2014). “Mineral resource estimation”. Springer Press, pp. 332. [12] Bristol, R. (2006). “Geostatistics in Surpac Vision”. Surpac Minex Group, pp. 116. [13] Glacken, I. M., and Snowden, D. V. (2001). “Mineral resource estimation”. Australasian Institute of Mining and Metallurgy, Melbourne, 189-198. | ||
آمار تعداد مشاهده مقاله: 645 تعداد دریافت فایل اصل مقاله: 727 |