تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,132 |
تعداد مشاهده مقاله | 4,252,780 |
تعداد دریافت فایل اصل مقاله | 2,846,803 |
Influence of drought stress on photosynthetic characteristics and protective enzymes in plants | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 9، شماره 1 - شماره پیاپی 17، تیر 2020، صفحه 114-129 اصل مقاله (535.07 K) | ||
نوع مقاله: Review Paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2020.13794.1278 | ||
نویسندگان | ||
Zahra Danaeipour؛ Raheem Haddad* | ||
Department of Biotechnology, Faculty of Agricultural Sciences and Natural Resources, Imam Khomeini International University, P. O. Box: 34149-16818, Qazvin, Iran. | ||
تاریخ دریافت: 30 تیر 1399، تاریخ بازنگری: 12 مهر 1399، تاریخ پذیرش: 21 مهر 1399 | ||
چکیده | ||
Drought stress as one of the major growth limiting factors in natural environments influences photosynthetic components and electron transfer process, elevating the production of reactive oxygen species (ROS), leading to damage to the cell. Furthermore, ROS are toxic by-products resulted from stress and are involved in signaling pathways, causing major transcriptional changes. ROS scavenging enzymes, localized in the thylakoid membrane of chloroplasts, play a key role in the detoxification of ROS. The capacity of ROS-scavenging enzymes depends on several factors including plant species, duration and intensity of drought stress, stages of plant development, and gene expression patterns of various isoforms. In this regard, novel functional and regulatory genes related to ROS-scavenging enzymes in plants are identified that play a key role in response to drought stress. These genes are differentially expressed in sensitive and tolerant species that may be related to the drought tolerance level of plant species themselves; but the overexpression of those genes in transgenic plants mainly improves drought stress tolerance. However, in some conditions, high drought stress severely damages the photosynthesis apparatus. This damage has a direct relationship to photochemical activities of both PSII and PSI that are required for protecting photosystems against photoinhibition. The photosystem protections are related to precise regulation in D1 protein accumulation under high light conditions, contributing to avoid excessive ROS accumulation. This review describes the influence of drought stress on photosynthetic characteristics, also discusses that the overexpression of genes associated with ROS scavenging enzymes in transgenic plants results in higher drought tolerance and improved photosynthetic characteristics. | ||
کلیدواژهها | ||
Antioxidant enzymes؛ Drought stress؛ Photosystem II؛ ROS metabolism؛ ROS scavenging | ||
عنوان مقاله [English] | ||
تاثیر تنش خشکی بر ویژگی های فتوسنتزی و آنزیم های محافظتی گیاهان | ||
نویسندگان [English] | ||
زهرا دانایی پور؛ رحیم حداد | ||
گروه بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران، کدپستی: 34149-16818. | ||
چکیده [English] | ||
تنش خشکی به عنوان یکی از مهمترین عوامل محدود کننده رشد در طبیعت، بر اجزای فتوسنتزی و زنجیره انتقال الکترون اثر می گذارد، تولید ROS را افزایش میدهد و منجر به مرگ سلولی میشود. همچنین، ROS محصول جانبی سمی ناشی از تنش است و در اکثر مسیرهای سیگنالینگ القاءکنندة تغییرات رونویسی دخالت دارد. آنزیمهای مهارکننده ROS در غشاء تیلاکوئید کلروپلاست قرار گرفتهاند و نقشی برجسته در سم زدایی ROS دارند. ظرفیت این آنزیمها به عوامل مختلفی از جمله گونههای گیاهی، طول مدت و شدت تنش خشکی، مراحل نموی گیاه و الگوی بیان ایزوفرم های مختلف بستگی دارد. از این رو، ژنهای تنظیمی و عملکردی جدید شناسایی شده است که نقشی مهم در پاسخ به تنش دارند. این ژنها در گونه های حساس و مقاوم بیانی متفاوت دارند که به سطح تحمل گونة گیاهی بستگی دارد؛ اما بیان بیش از حد این ژنها در گیاهان تراریخته به طور عمده باعث افزایش تحمل به خشکی میشود. شدت تنش خشکی با آسیب به دستگاه فتوسنتز رابطهای مستقیم دارد؛ یعنی فعالیتهای فتوشیمیایی هردو PSII و PSI کاهش مییابد که برای محافظت فتوسیستمها در برابر مهار نوری مورد نیاز است. این نظام حفاظتی به تنظیم دقیق تجمع پروتئین D1 در نور زیاد مربوط میشود و از تجمع بیش از حد ROS جلوگیری میکند. در این مقاله تأثیر تنش خشکی بر ویژگیهای فتوسنتزی و بیان بیش از حد ژنهای مرتبط با آنزیمهای مهارکننده ROS در گیاهان تراریخته بررسی شده است که منجر به تحمل بیشتر تنش خشکی و بهبود ویژگیهای فتوسنتزی میشود. | ||
کلیدواژهها [English] | ||
تنش خشکی, متابولیسم ROS, مهار کننده ROS, آنزیم آنتی اکسیدانت, فتوسیستم دو | ||
مراجع | ||
Abdallah M. B., Methenni K., Nouairi I., Zarrouk M., and Youssef N. B. (2017). Drought priming improves subsequent more severe drought in a drought-sensitive cultivar of olive cv. Chétoui. Scientia Horticulturae, 221: 43–52.
Abreu I. A., and Cabelli D. E. (2010). Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804: 263–274.
Asada K. (1994). Production and action of active oxygen species in photosynthetic tissues. Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, 77–104.
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141: 391–396.
Awad J., Stotz H. U., Fekete A., Krischke M., Engert C., Havaux M., Berger S., and Mueller M. J. (2015). 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiology, 167: 1592–1603.
Azri W., Cosette P., Guillou C., Rabhi M., Nasr Z., and Mliki, A. (2020). Physiological and proteomic responses to drought stress in leaves of two wild grapevines (Vitis sylvestris): a comparative study. Plant Growth Regulation, 91: 37–52.
Bartwal A., and Arora S. (2017). Drought stress-induced enzyme activity and mdar and apx gene expression in tolerant and susceptible genotypes of Eleusine coracana (L.). In Vitro Cellular & Developmental Biology-Plant, 53: 41–49.
Batra N. G., Sharma V., and Kumari N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of Plant Interactions, 9: 712–721.
Bernal-Bayard P., Ojeda V., Hervás M., Cejudo F. J., Navarro J. A., Velázquez-Campoy A., and Pérez-Ruiz J. M. (2014). Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x. FEBS Letters, 588: 4342–4347.
Brestic M., and Zivcak M. (2013). PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. Molecular Stress Physiology of Plants. Springer, 87–131.
Brestic M., Zivcak M., Kunderlikova K., Sytar O., Shao H., Kalaji H. M., and Allakhverdiev S. I. (2015). Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynthesis Research, 125: 151–166.
Cao S., Du X.-H., Li L.-H., Liu Y.-D., Zhang L., Pan X., Li Y., Li H., and Lu H. (2017). Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russian Journal of Plant Physiology, 64: 224–234.
Carrillo L. R., Froehlich J. E., Cruz J. A., Savage L. J., and Kramer D. M. (2016). Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. The Plant Journal, 87: 654–663.
Caverzan A., Passaia G., Rosa S. B., Ribeiro C. W., Lazzarotto F., and Margis-Pinheiro M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35: 1011–1019.
Cejudo F. J., Ferrández J., Cano B., Puerto-Galán L., and Guinea, M. (2012). The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signalling. FEBS Letters, 586: 2974–2980.
Cha J.-Y., Kim J. Y., Jung I. J., Kim M. R., Melencion A., Alam S. S., Yun D.-J., Lee S. Y., Kim M. G., and Kim W.-Y. (2014). NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought. Plant Physiology and Biochemistry, 80: 184–191.
Charuvi D., Nevo R., Shimoni E., Naveh L., Zia A., Adam Z., Farrant J. M., Kirchhoff H., and Reich Z. (2015). Photoprotection conferred by changes in photosynthetic protein levels and organization during dehydration of a homoiochlorophyllous resurrection plant. Plant Physiology, 167: 1554–1565.
Chaves M. M., Flexas J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551–560.
Chen Y. E., Liu W. J., Su Y. Q., Cui J. M., Zhang Z. W., Yuan M., Zhang H. Y., and Yuan, S. (2016). Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. Physiologia Plantarum, 158: 225–235.
Cho C.-W., Chung E., Heo J.-E., So H.-A., Choi H.-K., Kim D. H., Chung Y. S., Chae H. Z., and Lee J.-H. (2012). Molecular characterization of a 2-Cys peroxiredoxin induced by abiotic stress in mungbean. Plant Cell, Tissue and Organ Culture, 108: 473–484.
Choudhury S. B., Lee J.-W., Davidson G., Yim Y.-I., Bose K., Sharma M. L., Kang S.-O., Cabelli D. E., and Maroney M. J. (1999). Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry, 38: 3744–3752.
Courteille A., Vesa S., Sanz-Barrio R., Cazalé A.-C., Becuwe-Linka N., Farran I., Havaux M., Rey P., and Rumeau D. (2013). Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiology, 161: 508–520.
Cunha J. R., Carvalho F. E., Lima-Neto M. C., Jardim-Messeder D., Cerqueira J. V. A., Martins M. O., Fontenele A. V., Márgis-Pinheiro M., Komatsu S., and Silveira J. A. (2019). Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidal APX in response to drought stress. Journal of Proteomics, 192: 125–136.
D’Arcy-Lameta A., Ferrari-Iliou R., Contour-Ansel D., Pham-Thi A.-T., and Zuily-Fodil Y. (2005). Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Annals of Botany, 97: 133–140.
Dalal V. K., and Tripathy B. C. (2018). Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Scientific Reports, 8: 1–16.
Danna C. H., Bartoli C. G., Sacco F., Ingala L. R., Santa-María G. E., Guiamet J. J., and Ugalde R. A. (2003). Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiology, 132: 2116–2125.
Davletova S., Schlauch K., Coutu J., and Mittler R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology, 139: 847–856.
Delorme-Hinoux V., Bangash S. A., Meyer A. J., Reichheld J.-P. (2016). Nuclear thiol redox systems in plants. Plant Science, 243: 84–95.
Demidchik, V. (2015). Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany, 109: 212–228.
Dietz K.-J. (2016). Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?. Molecules and Cells, 39: 20–25.
Dietz K.-J., Turkan I., and Krieger-Liszkay A. (2016). Redox-and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiology, 171: 1541–1550.
Dos Santos C. V., and Rey P. (2006). Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science, 11: 329–334.
Drechsel D. A., and Patel M. (2010). Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. Journal of Biological Chemistry, 285: 27850–27858.
Duan M., Feng H.-L., Wang L.-Y., Li D., and Meng Q.-W. (2012). Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. Journal of Plant Physiology, 169: 867–877.
Ehsanpour A. A., Zarei S., and Abbaspour, J. (2012). The role of over expression of P5CS gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. Journal of Cell and Molecular Research, 4: 43–49.
Farooq M., Wahid A., Kobayashi N., Fujita D., and Basra S. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185–212.
Foyer C. H., and Noctor, G. (2016). Stress-triggered redox signalling: what’s in pROSpect?. Plant, Cell & Environment, 39: 951–964.
Fridovich I. (1995). Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64: 97–112.
Gao C., Zhang K., Yang G., and Wang Y. (2012). Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and exogenous abscisic acid (ABA). International Journal of Molecular Sciences, 13: 3751–3764.
Geigenberger P., Thormählen I., Daloso D. M., and Fernie, A. R. (2017). The Unprecedented Versatility of the Plant Thioredoxin System. Trends in Plant Science, 22: 249–262.
Guan C., Liu X., Song X., Wang G., Ji J., and Jin C. (2014). Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Molecular Breeding, 33: 657–667.
Haddad R., Heidari-Japelaghi R., and Eslami-Bojnourdi N. (2018). Isolation and functional characterization of two thioredoxin h isoforms from grape. International Journal of Biological Macromolecules, 120: 2545–2551.
Haddad R., Heidari-Japelaghi R., and Garoosi G. (2010). Expression analysis of three h-type thioredoxin isoforms in three Iranian grape (Vitis vinifera L.) cultivars, indicating differential expression in different tissues. Iranian Journal of Genetics and Plant Breeding, 1: 26–33.
Haddad R., and Japelaghi R. H. (2014). Abiotic and oxidative stress-dependent regulation of expression of the thioredoxin h multigenic family in grape Vitis vinifera. Biologia, 69: 152–162.
Haddad R., and Japelaghi R. H. (2015). Isolation of grape peroxiredoxin gene responding to abiotic stresses. Russian Journal of Plant Physiology, 62: 856–865.
Han X.-M., Chen Q.-X., Yang Q., Zeng Q.-Y., Lan T., and Liu Y.-J. (2019). Genome-wide analysis of superoxide dismutase genes in Larix kaempferi. Gene, 686: 29–36.
Han L. M., Hua W. P., Cao X. Y., Yan J. A., Chen C., and Wang Z. Z. (2020). Genome-wide identification and expression analysis of the superoxide dismutase (SOD) gene family in Salvia miltiorrhiza. Gene, 742: 144603.
Hasanuzzaman M., and Fujita M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 143: 1758–1776.
Huseynova I. M., Aliyeva D. R., and Aliyev J. A. (2014). Subcellular localization and responses of superoxide dismutase isoforms in local wheat varieties subjected to continuous soil drought. Plant Physiology and Biochemistry, 81: 54–60.
Ishikawa T., and Shigeoka S. (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience, Biotechnology, and Biochemistry, 72: 1143–1154.
Ishikawa T., Yoshimura K., Sakai K., Tamoi M., Takeda T., and Shigeoka S. (1998). Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant and Cell Physiology, 39: 23–34.
Japelaghi R., Haddad R., and Garoosi G.-A. (2011). Molecular characterization of an h-type thioredoxin gene from grape. Open Life Sciences, 6: 1006–1022.
Jardim-Messeder D., Caverzan A., Rauber R., Cunha J. R., Carvalho F. E., Gaeta M. L., da Fonseca G. C., Costa J. M., Frei M., and Silveira J. A. (2018). Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). Environmental and Experimental Botany, 150: 46–56.
Kale R., Hebert A. E., Frankel L. K., Sallans L., Bricker T. M., and Pospíšil P. (2017). Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proceedings of the National Academy of Sciences, 114: 2988–2993.
Kamangar A., and Haddad R. (2016). Effect of Water Stress and Sodium Silicate on Antioxidative Response in Different Grapevine (Vitis vinifera L.) Cultivars. Journal of Agricultural Science and Technology, 18: 1859–1870.
Kaouthar F., Ameny F.-K., Yosra K., Walid S., Ali G., and Faical B. (2016). Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. Journal of Plant Physiology, 198: 56–68.
Khan A., Anwar Y., Hasan M. M., Iqbal A., Ali M., Alharby H. F., Hakeem K. R., and Hasanuzzaman M. (2017). Attenuation of Drought Stress in Brassica Seedlings with Exogenous Application of Ca2+ and H2O2. Plants, 6: 1–13.
Kim M. R., Khaleda L., Jung I. J., Kim J. Y., Lee S. Y., Cha J.-Y., and Kim W.-Y. (2017). Overexpression of chloroplast-localized NADPH-dependent thioredoxin reductase C (NTRC) enhances tolerance to photo-oxidative and drought stresses in Arabidopsis thaliana. Journal of Plant Biology, 60: 175–180.
Kim S. Y., Jang H. H., Lee J. R., Sung N. R., Lee H. B., Lee D. H., Park D.-J., Kang C. H., Chung W. S., and Lim C. O. (2009). Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress. Plant Science, 177: 227–232.
Kleine T., and Leister D. (2016). Retrograde signaling: organelles go networking. Biochimica Et Biophysica Acta (BBA)-Bioenergetics, 1857: 1313–1325.
Lamkemeyer P., Laxa M., Collin V., Li W., Finkemeier I., Schöttler M. A., Holtkamp V., Tognetti V. B., Issakidis-Bourguet E., and Kandlbinder A. (2006). Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. The Plant Journal, 45: 968–981.
Lazzarotto F., Teixeira F. K., Rosa S. B., Dunand C., Fernandes C. L., de Vasconcelos Fontenele A., Silveira J. A. G., Verli H., Margis R., and Margis-Pinheiro M. (2011). Ascorbate peroxidase-related (APx-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytologist, 191: 234–250.
Le C. T. T., Brumbarova T., Ivanov R., Stoof C., Weber E., Mohrbacher J., Fink-Straube C., and Bauer P. (2016). Zinc finger of Arabidopsis thaliana12 (ZAT12) interacts with FER-like iron deficiency-induced transcription factor (FIT) linking iron deficiency and oxidative stress responses. Plant Physiology, 170: 540–557.
Lepistö A., Kangasjärvi S., Luomala E.-M., Brader G., Sipari N., Keränen M., Keinänen M., and Rintamäki E. (2009). Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiology, 149: 1261–1276.
Li J., Cang Z., Jiao F., Bai X., Zhang D., and Zhai R. (2017). Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. Journal of the Saudi Society of Agricultural Sciences, 16: 82–88.
Li X.-P., Müller-Moulé P., Gilmore A. M., and Niyogi K. K. (2002). PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proceedings of the National Academy of Sciences, 99: 15222–15227.
Li Y. J., Hai R. L., Du X. H., Jiang X. N., and Lu H. (2009). Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breeding, 128: 404–410.
Liebthal M., Maynard D., and Dietz K.-J. (2017). Peroxiredoxins and Redox Signaling in Plants. Antioxidants and Redox Signaling, 28: 609–624.
Lima C. S., Ferreira-Silva S. L., Carvalho F. E. L., Neto M. C. L., Aragão R. M., Silva E. N., Sousa R. M. J., and Silveira J. A. G. (2018). Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants. Environmental and Experimental Botany, 149: 59–69.
Liu F., Huang N., Wang L., Ling H., Sun T., Ahmad W., Muhammad K., Guo J., Xu L., and Gao S. (2018). A novel L-ascorbate Peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Frontiers in Plant Science, 8: 2262.
Liu W.-J., Chen Y.-E., Tian W.-J., Du J.-B., Zhang Z.-W., Xu F., Zhang F., Yuan S., and Lin H.-H. (2009). Dephosphorylation of photosystem II proteins and phosphorylation of CP29 in barley photosynthetic membranes as a response to water stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787: 1238–1245.
Lopez-Huertas E., and Luis A. (2014). Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits. Journal of Plant Physiology, 171: 1463–1471.
Lu Z., Liu D., and Liu S. (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Reports, 26: 1909–1917.
Lv Y., Li Y., Liu X., and Xu K. (2020). Photochemistry and proteomics of ginger (Zingiber officinale Roscoe) under drought and shading. Plant Physiology and Biochemistry,151: 188–196.
Ma X., Wang G., Zhao W., Yang M., Ma N., Kong F., Dong X., and Meng Q. (2017). SlCOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco. Journal of Plant Physiology, 216: 88–99.
Marinho H. S., Real C., Cyrne L., Soares H., and Antunes F. (2014). Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biology, 2: 535–562.
Maruta T., Tanouchi A., Tamoi M., Yabuta Y., Yoshimura K., Ishikawa T., and Shigeoka S. (2009). Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant and Cell Physiology, 51: 190–200.
Meyer Y., Belin C., Delorme-Hinoux V., Reichheld J.-P., and Riondet C. (2012). Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxidants & Redox Signaling, 17: 1124–1160.
Mignolet-Spruyt L., Xu E., Idänheimo N., Hoeberichts F. A., Mühlenbock P., Brosché M., Van Breusegem F., and Kangasjärvi J. (2016). Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany, 67: 3831–3844.
Mihailova G., Abakumov D., Büchel C., Dietzel L., and Georgieva K. (2017). Drought-Responsive Gene Expression in Sun and Shade Plants of Haberlea rhodopensis Under Controlled Environment. Plant Molecular Biology Reporter, 35: 313–322.
Miller G., Suzuki N., Ciftci-Yilmaz S., and Mittler R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33: 453–467.
Mock H.-P., and Dietz K.-J. (2016). Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864: 967–973.
Nahar K., Hasanuzzaman M., Alam M., and Fujita M. (2015). Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants, 7: 1–18.
Nahar S., Vemireddy L. R., Sahoo L., and Tanti B. (2018). Antioxidant Protection Mechanisms Reveal Significant Response in Drought-Induced Oxidative Stress in Some Traditional Rice of Assam, India. Rice Science, 25: 185–196.
Najafpour M. M., Renger G., Hołyńska M., Moghaddam A. N., Aro E.-M., Carpentier R., Nishihara H., Eaton-Rye J. J., Shen J.-R., and Allakhverdiev S. I. (2016). Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chemical Reviews, 116: 2886–2936.
Negi N. P., Shrivastava D. C., Sharma V., and Sarin N. B. (2015). Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Reports, 34: 1109–1126.
Neto V. G., Ribeiro P., Del-Bem L., Bernal D., Lima S. C., Ligterink W., Fernandez L., and de Castro R. (2018). Characterization of the superoxide dismutase gene family in seeds of two Ricinus communis L. genotypes submitted to germination under water restriction conditions. Environmental and Experimental Botany, 155: 453–463.
Nishiyama Y., Allakhverdiev S. I., and Murata N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757: 742–749.
Nuruzzaman M., Sharoni A. M., Satoh K., Moumeni A., Venuprasad R., Serraj R., Kumar A., Leung H., Attia K., and Kikuchi S. (2012). Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. Molecular Genetics and Genomics, 287: 389–410.
Okegawa Y., and Motohashi K. (2015). Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. The Plant Journal, 84: 900–913.
Payton P., Allen R. D., Trolinder N., and Holaday A. S. (1997). Over-expression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L., cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. Photosynthesis Research, 52: 233–244.
Pitcher L. H., Brennan E., Hurley A., Dunsmuir P., Tepperman J. M., and Zilinskas B. A. (1991). Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiology, 97: 452–455.
Prashanth S., Sadhasivam V., and Parida A. (2008). Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research, 17: 281–291.
Raja V., Majeed U., Kang H., Andrabi K. I., and John R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137:142–157.
Rhoads D. M., Umbach A. L., Subbaiah C. C., and Siedow J. N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiology, 141: 357–366.
Rizhsky L., Liang H., and Mittler R. (2003). The water-water cycle is essential for chloroplast protection in the absence of stress. Journal of Biological Chemistry, 278: 38921–38925.
Rosa S. B., Caverzan A., Teixeira F. K., Lazzarotto F., Silveira J. A., Ferreira-Silva S. L., Abreu-Neto J., Margis R., and Margis-Pinheiro M. (2010). Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry, 71: 548–558.
Ruban A. V., Johnson M. P., and Duffy C. D. (2012). The photoprotective molecular switch in the photosystem II antenna. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817: 167–181.
Salekjalali M., Haddad R., and Jafari B. (2012). Effects of soil water shortages on the activity of antioxidant enzymes and the contents of chlorophylls and proteins in barley. American-Eurasian Journal of Agricultural & Environmental Sciences, 12: 57–63.
Salekjalali M., Haddad H., and Jafari B. (2011). Analysis of antioxidant enzyme activity during reproductive stages of barley under drought stress. Journal of Ecobiotechnology, 3: 40–47
Sečenji M., Hideg É., Bebes A., and Györgyey J. (2010). Transcriptional differences in gene families of the ascorbate–glutathione cycle in wheat during mild water deficit. Plant Cell Reports, 29: 37–50.
Shivakrishna P., Reddy K. A., and Rao D. M. (2017). Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences, 25: 285–289.
Signorelli S., Casaretto E., Sainz M., Díaz P., Monza J., and Borsani O. (2013a). Antioxidant and photosystem II responses contribute to explain the drought–heat contrasting tolerance of two forage legumes. Plant Physiology and Biochemistry, 70: 195–203.
Signorelli S., Corpas F. J., Borsani O., Barroso J. B., and Monza J. (2013b). Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Science, 201: 137–146.
Silvestre W. V. D., Silva P. A., Palheta L. F., de Oliveira Neto C. F., de Melo Souza R. O. R., Festucci-Buselli R. A., and Pinheiro H. A. (2017). Differential tolerance to water deficit in two açaí (Euterpe oleracea Mart.) plant materials. Acta Physiologiae Plantarum, 39: 1–10.
Singh N., Mishra A., and Jha B. (2014). Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Marine Biotechnology, 16: 321–332.
Song F.-n., Yang C.-p., Liu X.-m., and Li G.-b. (2006). Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmus pumila L. Journal of Forestry Research, 17: 13–16.
Song J., Zeng L., Chen R., Wang Y., and Zhou Y. (2018). In silico identification and expression analysis of superoxide dismutase (SOD) gene family in Medicago truncatula. 3 Biotech, 8: 1–12.
Sperdouli I., and Moustakas M. (2012). Differential response of photosystem II photochemistry in young and mature leaves of Arabidopsis thaliana to the onset of drought stress. Acta Physiologiae Plantarum, 34: 1267–1276.
Stacy R. A., Munthe E., Steinum T., Sharma B., and Aalen R. B. (1996). A peroxiredoxin antioxidant is encoded by a dormancy-related gene, Per1, expressed during late development in the aleurone and embryo of barley grains. Plant Molecular Biology, 31: 1205–1216.
Suga M., Akita F., Hirata K., Ueno G., Murakami H., Nakajima Y., Shimizu T., Yamashita K., Yamamoto M., and Ago H. (2015). Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature, 517: 99–103.
Sun W.-H., Duan M., Shu D.-F., Yang S., and Meng Q.-W. (2010). Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Reports, 29: 917–926.
Suneja Y., Gupta A. K., and Bains N. S. (2017). Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress. Physiology and Molecular Biology of Plants, 23: 99–114.
Tale Ahmad S., and Haddad R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47: 17–27.
Tang L., Tang H., Kwak S., Lee H., Wang S., and Yang X. (2008). Improving potato plants oxidative stress and salt tolerance by gene transfer both of Cu/Zn superoxide dismutase and ascorbate peroxidase. Journal of Chinese Biotechnology, 28: 25–31.
Teixeira F. K., Menezes-Benavente L., Galvão V. C., and Margis-Pinheiro M. (2005). Multigene families encode the major enzymes of antioxidant metabolism in Eucalyptus grandis L. Genetics and Molecular Biology, 28: 529–538.
Teixeira F. K., Menezes-Benavente L., Galvão V. C., Margis R., and Margis-Pinheiro M. (2006). Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta, 224: 300–314.
Teixeira F. K., Menezes-Benavente L., Margis R., and Margis-Pinheiro M. (2004). Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. Journal of Molecular Evolution, 59: 761–770.
Thormählen I., Zupok A., Rescher J., Leger J., Weissenberger S., Groysman J., Orwat A., Chatel-Innocenti G., Issakidis-Bourguet E., and Armbruster U. (2017). Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Molecular Plant, 10: 168–182.
Ueda Y., Uehara N., Sasaki H., Kobayashi K., and Yamakawa T. (2013). Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. Plant Physiology and Biochemistry, 70: 396–402.
Vidigal P., Carvalho R., Amâncio S., and Carvalho L. (2013). Peroxiredoxins are involved in two independent signalling pathways in the abiotic stress protection in Vitis vinifera. Biologia Plantarum, 57: 675–683.
Vighi I., Benitez L., Amaral M., Moraes G., Auler P., Rodrigues G., Deuner S., Maia L., and Braga E. (2017). Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress. Biologia Plantarum, 61: 540–550.
Wu J., Zhang J., Li X., Xu J., and Wang L. (2016). Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.) Scribn. et Merr. Plant Growth Regulation, 79: 55–64.
Wu L., Zhang Z., Zhang H., Wang X.-C., and Huang R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiology, 148: 1953–1963.
Xia L., Yang L., Sun N., Li J., Fang Y., and Wang Y. (2016). Physiological and antioxidant enzyme gene expression analysis reveals the improved tolerance to drought stress of the somatic hybrid offspring of Brassica napus and Sinapis alba at vegetative stage. Acta Physiologiae Plantarum, 38: 88.
Xie H., Yang D.-H., Yao H., Bai G., Zhang Y.-H., and Xiao B.-G. (2016). iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochemical and Biophysical Research Communications, 469: 768–775.
Yadav P., Yadav T., Kumar S., Rani B., Jain V., and Malhotra S. (2014). Partial purification and characterization of ascorbate peroxidase from ripening ber (Ziziphus mauritiana L) fruits. African Journal of Biotechnology, 13: 3323–3331.
Yang G., Yu L., Zhang K., Zhao Y., Guo Y., and Gao C. (2017). A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiology and Biochemistry, 113: 187–197.
Yao Y., Liu Y., Hu X., Xing S., and Xu L. (2018). Isolation and expression analysis of Cu/Zn superoxide dismutase genes in sugarcane and the wild species Saccharum arundinaceus. Biotechnology & Biotechnological Equipment, 32: 41–48.
Yi X.-P., Zhang Y.-L., Yao H.-S., Han J.-M., Chow W.S., Fan D.-Y., and Zhang W.-F. (2018). Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit. Journal of Plant Physiology, 220: 74–82.
Yoshimura K., Yabuta Y., Ishikawa T., and Shigeoka S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 123: 223–234.
Yoshimura K., Yabuta Y., Ishikawa T., and Shigeoka S. (2002). Identification of a cis element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants. Journal of Biological Chemistry, 277: 40623–40632.
Zandalinas S. I., Mittler R., Balfagón D., Arbona V., and Gómez-Cadenas A. (2017). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162: 2–12.
Zhang C., Shi S., Liu Z., Yang F., and Yin G. (2019a). Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. Journal of Plant Physiology, 232: 226–240.
Zhang D.-Y., Yang H.-L., Li X.-S., Li H.-Y., and Wang Y.-C. (2014). Overexpression of Tamarix albiflonumTaMnSOD increases drought tolerance in transgenic cotton. Molecular Breeding, 34: 1–11.
Zhang H.-H., Xu N., Teng Z.-Y., Wang J.-R., Ma S., Wu X., Li X., and Sun G.-Y. (2019b). 2-Cys Prx plays a critical role in scavenging H2O2 and protecting photosynthetic function in leaves of tobacco seedlings under drought stress. Journal of Plant Interactions, 14: 119–128.
Zhang L., Sun L., Zhang L., Qiu H., Liu C., Wang A., Deng F., and Zhu J. (2017). A Cu/Zn superoxide dismutase gene from Saussurea involucrata Kar. et Kir., SiCSD, enhances drought, cold and oxidative stress in transgenic tobacco. Canadian Journal of Plant Science, 97: 816–826.
Zhao J.-h., Li H.-x., Zhang C.-z., An W., Yin Y., Wang Y.-j., and Cao Y.-l. (2017). Physiological response of four wolfberry (Lycium Linn.) species under drought stress. Journal of Integrative Agriculture, 17: 603–612.
Zhao Q., Hu R. S., Liu D., Liu X., Wang J., Xiang X. H., Zhou R., Kan X., Chen J., Hua H., Li Y., Ren J., Feng K., Liu H., Deng D., and Yin Z. (2019). Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environmental and Experimental Botany, 158: 51–62.
Zlatev Z., and Lidon F. C. (2012). An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 1: 57–72. | ||
آمار تعداد مشاهده مقاله: 615 تعداد دریافت فایل اصل مقاله: 327 |