تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,132 |
تعداد مشاهده مقاله | 4,252,268 |
تعداد دریافت فایل اصل مقاله | 2,846,589 |
بررسی لیچینگ سرباره کوره ریورب مس سرچشمه با استفاده از هیدروژن پراکسید و نانوذرات هماتیت | ||
نشریه مهندسی منابع معدنی | ||
مقاله 9، دوره 6، شماره 4 - شماره پیاپی 22، دی 1400، صفحه 141-154 اصل مقاله (950.39 K) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2021.13404.1416 | ||
نویسندگان | ||
عارف فقیهی1؛ مهران قلی نژاد* 2؛ اسماعیل رحیمی2؛ احمد ادیب3 | ||
1دانشجوی دکترا، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران | ||
2استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران | ||
3دانشیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران | ||
تاریخ دریافت: 12 خرداد 1399، تاریخ بازنگری: 07 مهر 1399، تاریخ پذیرش: 21 دی 1399 | ||
چکیده | ||
لیچینگ سرباره کوره ریورب مس سرچشمه با استفاده از اسید سولفوریک و هیدروژن پراکسید مورد بررسی قرار گرفت. نتیجه آنالیزها نشان داد که سرباره حاوی 7/0 درصد مس و 75/37 درصد آهن و عمده فازها و کانیهای سرباره فایالیت، مگنتیت، دیوپسیت و کالکوپیریت است. تاثیر پارامترهای مختلف شامل اندازه ذرات، دما، pH، غلظت هیدروژن پراکسید و سرعت همزدن پالپ مورد بررسی قرار گرفت. بر اساس نتایج به دست آمده با کاهش اندازه ذرات سرباره از ابعاد 250-150 به 75-48 میکرون حداکثر بازیابی مس و آهن به ترتیب از 03/23 و 34/22 درصد به 14/26 و 12/28 درصد افزایش یافت ولی با کاهش بیشتر اندازه ذرات سرباره تا کمتر از 48 میکرون افزایش کمی در بازیابی مس و آهن مشاهده شد. با کاهش pH پالپ از 4/2 تا 5/1 میزان بازیابی مس و آهن به ترتیب از 12/18 و 95/20 درصد به 14/29 و 04/31 درصد افزایش یافت. تغییر در غلظت اولیه هیدروژن پراکسید بیشترین تاثیر را بر بازیابی مس از خود نشان داد. افزایش غلظت هیدروژن پراکسید از 5/0 تا 2 مولار سبب افزایش بازیابی مس از 14/29 به 12/54 درصد شد ولی افزایش بیشتر غلظت هیدروژن پراکسید تا 3 مولار، بازیابی آهن را تشدید کرد. افزایش دمای پالپ از 35 تا 45 درجه سانتیگراد سبب افزایش بازیابی مس از 5/53 تا 5/59 درصد شد ولی تاثیر افزایش دما تا 50 درجه سانتیگراد بیشتر بر بازیابی آهن مشهود بود. استفاده از نانوذرات هماتیت در فرآیند لیچینگ، سبب بهبود عملکرد هیدروژن پراکسید و افزایش بازیابی مس شد. | ||
کلیدواژهها | ||
سرباره ریورب؛ لیچینگ سرباره؛ اسید سولفوریک؛ هیدروژن پراکسید؛ هیدرومتالورژی | ||
عنوان مقاله [English] | ||
Investigation of the Leaching of Sarcheshmeh Reverberatory Furnace Slag Using Hydrogen Peroxide and Hematite Nano Particles | ||
نویسندگان [English] | ||
A. Faghihi1؛ M. Gholinejad2؛ E. Rahimi2؛ A. Adib3 | ||
1Ph.D Student, Dept. of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
2Assistant Professor, Dept. of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
3Associate Professor, Dept. of Mining Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
The present study aims to investigate the slag leaching of Sarcheshmeh copper reverberatory furnace using sulfuric acid and hydrogen peroxide. The results of the analyses indicated that the slag contains 0.7% of copper and 37.75% of iron. Most of the slag minerals include fayalite, magnetite, diopside and chalcopyrite. This research scrutinizes the effect of different parameters including the size of particles, temperature, PH, the concentration of hydrogen peroxide and the velocity pulp stirring on the recovery of copper and iron. Based on the results, as the size of particles of slag is reduced from 150- 250 to 48-74 micron, the maximum recovery of copper and iron is increased from 23.03% and 22.34% to 26.14 and 28.12%, respectively. However, as the size of particles is diminished less than 48 microns, less increase is detected in the recovery of copper and iron. When the pulp PH is reduced from 2.4 to 1.5, the recovery amount of copper and iron is increased from 18.12% and 20.95% to 29.14% and 31.04%, respectively. Changing the primary concentration of hydrogen peroxide affected the copper recovery the most. Increasing the concentration of hydrogen peroxide from 0.5 M to 2 M enhances copper recovery from 29.14% to 54.12%. Increasing the pulp temperature from 35 to 45°c subjected to enhance copper recovery from 53.5% to 59.5%. In fact, the enhancement of temperature to 50°c mostly influenced iron recovery. Using the hematite nano- particles in the leaching process leads to improve the function of hydrogen peroxide and increase the copper recovery. | ||
کلیدواژهها [English] | ||
Reverberatory slags, Slag leaching, Hematite nano particles, Hydrogen peroxide, Hydrometallurgy | ||
مراجع | ||
[1] Masloboev, A., Seleznev, S. G., Svetlov, A. V., and Makarov, D. V. (2018). “Hydrometallurgical Processing of Low-Grade Sulfide Ore and Mine Waste in the Arctic Regions: Perspectives and Challenges”. Minerals, 8(10): 436. [2] Kamran Khalid, M., Hamuyuni, J., Agarwal, V., Pihlasalo, J., Haapalainen, M., and Lundstroma, M. (2019). “Sulfuric acid leaching for capturing value from copper rich converter slag”. Journal of Cleaner Production, 215: 1005-1013. [3] Aracena, A., Fernandez, F., Jerez, O. , and Jaques, A. (2019). “Converter slag leaching in ammonia medium/column system with subsequent crystallisation with NaSH”. Hydrometallurgy, 188: 31-37. [4] Shen, H., and Forssberg, E. (2003). “An overview of recovery of metals from slags”. Waste Management, 23: 933-949. [5] Balakrishnan, M., Batra, V. S., and Hargreaves, J. S. J. (2014). “Waste from metal processing industries”. In Hargreaves, J. S. J., Pulford, I. D., Balakrishnan, M., Batra, V. S. (Eds.), Conversion of Large Scale Wastes into Value-Added Products. CRC Press, Boca Raton, 23-68 [6] Anand, S., Kantarao, P., and Jena, P. K. (1980). “Recovery of metal values from copper converter and smelter slags by ferric chloride leaching”. Hydrometallurgy, 5: 355-365. [7] Anand, S., Sarveswara, K., and Jena, P. K. (1983). “Pressure leaching of copper converter slag using dilute sulphuric acid for the extraction of cobalt, nickel and copper values”. Hydrometallurgy, 10: 305-312. [8] Altundogan, H. S., Boyrazli, M., and Tumen, F. (2004). “A study on the sulfuric acid leaching of copper converter slag in the presence of dichromate”. Minerals Engineering, 17: 465-467. [9] Bese, A. V. (2007). “Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching, Ultrason”. Sonochem, 14: 790-796. [10] Carranza, F., Iglesias, N., Mazuelos, A., Romero, R., and Forcat, O. (2009a). “Ferric leaching of copper slag flotation tailings”. Minerals Engineering, 22: 107-110. [11] Yang, Z., Ruilin, M., Wangdong, N., and Hui, W. (2010). “Selective leaching of base metals from copper smelter slag”. Hydrometallurgy, 103: 25-29. [12] Potysz, A., Lens, P. N. L., Van De Vossenberg, J., Rene, E. R., Grybos, M., Buibaud, G., Kierczak, J., and Van Hullebusch, E. D. (2016a). “Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans”. Applied Geochemistry, 68: 39-52. [13] Potysz, A., Van Hullebusch, E. D., Kierczak, J., Grybos, M., Lens, P. N. L., and Guibaud, G. (2015). “Copper metallurgical slags - current knowledge and fate: a review, Crit. Rev. Environ”. SciTechnol, 45: 2424-2488. [14] Khataee, A., Gholami, P., and Vahid, B. (2017). “Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation”. Journal of Industrial and Engineering Chemistry, 50: 86-95. [15] Chan, J. Y. T., Ang, S. Y., Ye, E. Y., Sullivan, M., Zhang, J., and Lin, M. (2015). “Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets”. Physical Chemistry, Chemical Physics, 17: 25333-25341. [16] Huang, X., Chen, Y., Walter, E., Zong, M., Wang, Y., Zhang, X., Qafolu, O., Wang, Z., and Kevin,M. R. (2019). “Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles”. Environmental Science And Technology, 53: 10197-10207. [17] Li, M., Zhand, Y., Wang, Z. H., Yang, J. G., Qiao, S., and Zheng, S. L. (2016). “Extraction of copper, zinc and cadmium from copper–cadmiumbearing slag by oxidative acid leaching process”. Rare Metals, 25: 1-10. [18] Moravyov, M. I., Fomchenko, N. V., Usoltsev A. V., Vasilyev, E. A., and Kondrateva, T. S. (2012). “Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3”. Hydrometallurgy, 119-120: 40-46. [19] Urosevic, D. M., Dimitrijevic, M. D., Jankovic, Z. D., and Antik, D. V. (2014). “Recovery of copper from copper slag and copper slag flotation tailings by oxidative leaching”. Physicochemical Problems of Mineral Processing, 51: 73-82. [20] Abou-Yousef, H., El-Sakhawy, M., and Kamel, S. (2005). “Multi-stage Bagasse pulping by using alkali/Caro’s acid treatment”. Industrial Crops and Products, 21: 337-341. [21] Petrucci, R. H., Herring, F. G., Madura, J. D., and Bissonnette, C. (2016). “General chemistry: principles & modern applications”. Prentice Hall, 11rd Ed., pp. 606. [22] Kiraci, A., and Yurtseven, H. (2012). “Temperature dependence of the raman frequency, damping constant and the activation energy of a soft-optic mode in ferroelectric barium titanate”. Ferroelectrics,432(1): 14-21. [23] Addiscott, T. M., and Wagenet, R. J. (1985). “Concepts of solute leaching in soils: a review of modelling approaches”. Journal of Soil Science, 36(3): 411-424. [24] Tang, Y., Shen, T., and Meng, Z. (2019). “A kinetic study on the mechanisms of metal leaching from the top surface layer of copper aluminates and copper ferrites”. Environmental Geochemistry and Health,41: 2491-2503. [25] Brauer, G. (1963). “Handbook of preparative inorganic chemistry”. Translation Editing by Reed, F., 5rd Ed., New York, N.Y.: Academic Press, pp. 779. [26] مظفری، ع.، ساکی، ا.، فقیهی، ع.، فتحینیا، س.؛ 1396؛ "بهینهسازی پارامترهای مؤثر بر حذف آلاینده رنگزای نارنجی اسیدی 7 توسط نانو ذرات مگنتیت با به کارگیری روش مدلسازی رویهی پاسخ و استفاده از نرمافزار مینی تب16". فصلنامه علوم و تکنولوژی محیط زیست، دوره نوزدهم، شماره5، ص 167-157. [27] Tony, M. A., Mansour, S. A., Tayeb, A. M., and Purcell, P. J. (2018). “Use of a fenton-like process based on nano-haematite to treat synthetic wastewater contaminated by phenol: Process Investigation and Statistical Optimization”. Arabian Journal for Science and Engineering, 43: 2227-2235. [28] Radovic, M. D., Mitrovic, J. Z., Kostic, M. M., Bojic, D. V., Petrovic, M. M., Najdanovic, S. M., Bojicc, A. L. (2015). “Fenton and photo-Fentonprocesses for the decolorization of reactive dyes. Comparison of ultraviolet radiation/hydrogen peroxide”. Hemijska Industrija, 69(6): 657-665. [29] Araujo, F. V. F., Yokoyama, L., Teixeira, L. A. C., and Campos, J. C. (2011). “Heterogeneous fenton process using the mineral hematite for the discolouration of a reactive dye solution”. Brazilian Journalof Chemical Engineering, 28(4): 605-616. [30] Hadjltaief, H. B., Sdiri, A., Galvez, M. E., Zidi, H., Da costa, P., and Ben Zina, M. (2018). “Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process”. ChemEngineering, 24(3): 171-182. [31] Lin, S. S., and Gurol, M. D. (1998). “Catalytic decomposition of hydrogen peroxide on iron oxides: kinetics, mechanism and implication”. Environmental Science and Technology, 32: 1417. [32] Kwan, W. P., and Voelker, B. M. M. (2003). “Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems”. Environmental Science and Technology, 37: 1150. [33] Hayyan, M., Hashim, M. A., and AlNashef I. M. (2016). “Superoxide Ion: Generation and Chemical Implications”. ChemicalReviews, 116(5): 3029-3085 [34] Pierluigi, B., Francesca, L. (2010). “Heterogenized Homogeneous Catalysts for Fine Chemicals roduction” Dordrecht: Springer, ISBN978-90-481-3695-7. [35] Fukui, T., Murata, K., Ohara, S., Abe, H., Naito, M., and Nogi, K. (2004). “Morphology control of Ni–YSZ cermet anode for lower temperature operation of SOFCs”. Journal of Power Sources, 125 (1): 17-21. [36] Fathinia, S., Fathinia, M., Rahmani, A. A., and Khataee, A. (2015). “Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process”. Applied Surface Science, 327: 190-200. [37] Oloubambi, P., Ndlovu, S., and Borode, J. O. (2006). “Sulphuric acid leaching of zinc and copper from Nigerian Complex Sulphide Ore in the presence of hydrogen peroxide”. Journal of the Southern African Institute of Mining and Metallurgy, 106(11): 765-770. [38] Jiyang, T., Yang, Y., Zhang, B., Huang, Z. (2002). “Kinetics of silver leaching from manganese-silver associated ores in sulfuric acid solution in the presence of hydrogen peroxide”. Metallurgical and Materials Transactions, 33(6): 813-816. [39] Adebayo, A. O., Ipinmoroti, K. O., and Ajayi, O. O. (2003). “Dissolution kinetics of chalcopyrite with hydrogen peroxide in sulphuric acid medium”. Chemical and Biochemical Engineering Quarterly, 17: 213-218. [40] Carranza, F., Iglesias, N., Mazuelos, A., Romero, R., and Forcat, O. (2009). “Ferric leaching of copper slag flotation tailings”. Minerals Engineering, 22: 107-110. [41] Liang, X., Zhong, Y., He, H., Yuan, P., and Zhu, J. (2012). “The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes”. Chemical Engineering Journal, 191: 177-184. [42] Neuendorf, K. K. E., Mehl, J. P., and Jackson, J. A. (2005). “Glossary of Geology”. Alexandria, Virginia, American Geological Institute, 5rd Ed., pp. 779. [43] Bayat, M., Sohrabi, M., and Royaee, S. J. (2012). “Degradation of phenol by heterogeneous Fenton reaction using Fe/clinoptilolite”. Journal of Industrial and Engineering Chemistry, 18: 957-962. | ||
آمار تعداد مشاهده مقاله: 650 تعداد دریافت فایل اصل مقاله: 384 |