تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,423 |
تعداد دریافت فایل اصل مقاله | 2,845,819 |
Stability of some of rice genotypes based on WAASB and MTSI indices | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 9، شماره 2 - شماره پیاپی 18، دی 2020، صفحه 1-11 اصل مقاله (532.03 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2021.14432.1283 | ||
نویسندگان | ||
peyman Sharifi* 1؛ Abdolrahman Erfani2؛ Abouzar Abbasian3؛ Ali Mohaddesi3 | ||
1Department of Agronomy and Plant Breeding, Rasht Branch, Islamic Azad University, P. O. Box: 41476-54919, Rasht, Iran. | ||
2Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization (AREEO), Amol, Iran. | ||
3Rice Research Station of Tonekabon, Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization (AREEO), Tonekabon, Iran. | ||
تاریخ دریافت: 05 آبان 1399، تاریخ بازنگری: 12 اسفند 1399، تاریخ پذیرش: 12 اسفند 1399 | ||
چکیده | ||
Ten rice genotypes were evaluated in a randomized complete block design with four replications in three regions of Iran during three cropping seasons. Likelihood ratio test (LRT) was shown the significant effects of genotype and genotype by environment interaction (GEI). Scree plot indicated the first three components explained 81.24% of GEI variation. Mosaic plot partitioned total sum of squares (TSS) and indicated genotype and GEI effects illustrated 52.72% and 47.28% of TSS, respectively. Heatmap plot also exhibited variations in the grain yield of genotypes across environments. The best linear unbiased predictors (BLUPs) of grain yield showed that G2, G5, G4, G10 and G6 had a higher prediction than the overall grain yield. The nominal yield plot indicated G4, G5, G6 and G10 had a small contribution in GEI and were more stable genotypes. In the fourth quarter of grain yield vs the weighted average of absolute scores (WAASB) biplot, G2, G5 and G10 were highly productive and stable. Based on a weight of 50:50 for grain yield and stability, G5, G6, G2, and G3 had the highest WAASBY values and were determined as stable genotypes. In WAASB/GY ratio plot, it is observed that G5, G6, G2, and G3 had the highest WAASBY values and were deyermined as stable genotypes. Factor analysis based on WAASBY values of all of the traits identified three factors with a cumulative variance of 79.35. Based on the multi-trait stability index (MTSI), G6 and G3 were selected. In conclusion, G5 was superior to all genotypes and can be used to determine the best cropping manangement in agronomic research experiments and for the introduction of new cultivars. | ||
کلیدواژهها | ||
AMMI؛ BLUP؛ Factor analysis؛ Heatmap؛ Mosaic plot | ||
عنوان مقاله [English] | ||
پایداری برخی از ژنوتیپ های برنج بر اساس شاخصهای WAASB و MTSI | ||
نویسندگان [English] | ||
پیمان شریفی1؛ عبدالرحمان عرفانی2؛ ابوذر عباسیان3؛ علی محدثی3 | ||
1گروه زراعت و اصلاح نباتات، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران، کدپستی: 41476-54919. | ||
2موسسه تحقیقات برنج کشور، بخش اصلاح و تهیه بذر، آمل، ایران. | ||
3ایستگاه تحقیقات برنج تنکابن، موسسه تحقیقات برنج کشور، معاونت مازندران، سازمان تحقیقات آموزش و ترویج کشاورزی، تنکابن، ایران. | ||
چکیده [English] | ||
ده ژنوتیپ برنج در قالب طرح بلوکهای کامل تصادفی با چهار تکرار در سه منطقه از ایران طی سه فصل زراعی بررسی شد. آزمون نسبت درستنمایی (LRT) اثرات معنیدار ژنوتیپ و برهمکنش ژنوتیپ در محیط (GEI) را نشان داد. اسکریگراف نشان داد که سه مؤلفه اصلی اول 24/81 درصد از تنوع GEI را توجیه کردند. نمودار موزاییکی، مجموع مربعات کل (TSS) را تقسیم کرد و نشان داد که اثرات ژنوتیپ و GEI بهترتیب 72/52 و 28/47 درصد ازTSS را در بر گرفتند. همچنین نمودار گرمایی تنوع عملکرد دانه، ژنوتیپها را در محیطها نشان داد. بهترین پیشبینیهای نااریب خطی (BLUP) عملکرد دانه نشان داد که ژنوتیپهای 2، 5، 4، 10 و 6 پیشبینی بالاتری نسبت به عملکرد دانه کلی داشتند. نمودار عملکرد اسمی نشان داد که ژنوتیپهای 4، 5، 6 و 10 سهم اندکی در GEI داشتند و بهعنوان ژنوتیپهای پایدارتر بودند. در چارک چهارم بایپلات عملکرد دانه در مقابل میانگین وزنی نمرات مطلق (WAASB) ژنوتیپهای 2، 5 و 10 با عملکرد بالا و پایدار بودند. بر اساس وزندهی 50:50 برای عملکرد و پایداری دانه، ژنوتیپهای 5، 6، 2 و 3 بالاترین مقادیر WAASBY را داشتند و ژنوتیپهای پایدار بودند. در نمودار نسبت WAASB/GY مشاهده شد که ژنوتیپهای 5، 6، 2 و 3 بالاترین مقادیر WAASBY را داشته و ژنوتیپهای پایداری بودند. تجزیه عاملی بر اساس مقادیر WAASBY از همه صفات، سه عامل را با واریانس تجمعی 35/79 درصد مشخص کرد. بر اساس شاخص پایداری چند صفتی (MTSI)، ژنوتیپهای 6 و 3 بهعنوان ژنوتیپهای برگزیده بودند. در مجموع، ژنوتیپ 5 برتر از همه ژنوتیپها بود و میتواند برای تعیین بهترین مدیریت زراعی در آزمایشهای پژوهشی به زراعی برای معرفی رقم استفاده شود. | ||
کلیدواژهها [English] | ||
AMMI, BLUP, تجزیه عاملی, نمودار گرمایی, نمودار موزاییکی | ||
مراجع | ||
Akter A., Jamil Hassan M., Umma Kulsum M., Islam M. R., Hossain K., and Mamunur Rahman M. (2014). AMMI biplot analysis for stability of grain yield in hybrid rice (Oryza sativa L.). Journal of Rice Research, 2(2): 1–4. DOI: 10.4172/jrr.1000126. Balestre M., dos Santos V. B., Soares A. A., and Reis M. S. (2010). Stability and adaptability of upland rice genotypes. Crop Breeding and Applied Biotechnology, 10: 357–363. Bose L. K., Jambhulkar N. N., Pande K., and Singh O. N. (2014a). Use of AMMI and other stability statistics in the simultaneous selection of rice genotypes for yield and stability under direct-seeded conditions. Chilean Journal of Agricultural Research, 74(1): 1–7. Bose L. K., Jambhulkar N. N., and Singh O. N. (2014b). Additive main effects and multiplicative interaction (AMMI) analysis of grain yield stability in early duration rice. Journal of Animal and Plant Sciences, 24(6): 1885–1897. Chandel G., Banerjee S., See S., Meena R., Sharma D. J., and Verulkar S. B. (2010). Effect of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Science, 17: 213–227. Donoso-Ñanculao G., Paredes M., Becerra V., Arrepol C., and Balzarini M. (2016). GGE biplot analysis of multi-environment yield trials of rice produced in a temperate climate. Chilean Journal of Agricultural Research, 76(2): 152–157. Kumar Das C., Bastia D., Naik B. S., Kabat B., Mohanty M. R., and Mahapatra S. S. (2018). GGEBiplot and AMMI analysis of grain yield stability and adaptability behaviour of paddy (Oryza sativa L.) genotypes under different agroecological zones of Odisha. Oryza, 55(4): 528–542. DOI: 10.5958/2249-5266.2018.00064.4. Laffont J. L., Hanafi M., and Wright K. (2007). Numerical and graphical measures to facilitate the interpretation of GGE biplots. Crop Science, 47: 990–996. DOI: 10.2135/cropsci2006.08.0549. Laffont J. L., Wright K., and Hanafi M. (2013). Genotype plus genotype×block of environments biplots. Crop Science, 53 (6): 2332–2341. DOI: 10.2135/cropsci2013.03.0178. Olivoto T., and Lúcio A. D. (2020). Metan: An R package for multi-environment trial analysis. Methods in Ecology and Evoluon, 00: 1–7. Olivoto T., Lúcio A. D. C., da Silva J. A. G., Marchioro V. S., de Souza V. Q., and Jost E. (2019a). Mean performance and stability in multi-environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6): 2949–2960. DOI: 10.2134/agronj2019.03.0220. Olivoto T., Lúcio A. D. C., da Silva J. A. G., Sari B. G., and Diel M. I. (2019b). Mean performance and stability in multi-environment trials II: selection based on multiple traits. Agronomy Journal, 111(6): 2961–2969. DOI: 10.2134/agronj2019.03.0221. Rahayu S. (2020). Yield stability analysis of rice mutant lines using AMMI method. IOP Conf Series: Journal Physics, 1436(1): 1–9. DOI: 10.1088/1742-6596/1436/1/012019. Rerkasem B., Jumrus S., Yimyam N., and Prom-u-thai C. (2015). Variation of grain nutritional quality among Thai purple rice genotypes grown at two different altitudes. Science Asia, 41: 377–385 Sadimantara G. R., Kadidaa B., Suaib L., and Safuan O. (2018). Growth performance and yield stability of selected local upland rice genotypes in Buton Utara of Southeast Sulawesi. IOP Conf Series: Earth and Environmental Science, 122(1): 1–7. DOI: 10.1088/1755-1315/122/1/012094. Samonte S. O. P., Wilson L. T., McClung A. M., and Medley J. C. (2005) Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Science, 45(6): 2414–2424. Santos F., and Marza F. (2020). Selection of forage oat genotypes through GGE Biplot and BLUP. BioRxiv, 1–9. DOI: https://doi.org/10.1101/2020.03.10.986422. Sharifi P. (2020). Evolution, domestication, breeding methods and the latest breeding findings in rice. Agricultural and Natural Resources Engineering Organization of IRAN, pp. 254. (In Persian). Sharifi P., Aminpanah H., Erfani R., Mohaddesi A., and Abbasian A. (2017). Evaluation of genotype×environment interaction in rice based on AMMI model in Iran. Rice Science, 24(3): 173−180. Suwarto N. (2011). Genotype×environment interaction for iron concentration of rice in Central Java of Indonesia. Rice Science, 18: 75–78. Wright K., and Laffont J. L. (2018). Package ‘gge’. https://github.com/kwstat/gge/issues. Yan W., and Kang M. S. (2003). GGE biplot analysis: a graphical tool for breeders, geneticists and agronomists. 1st Edn., CRC Press LLC., Boca Raton, Florida, pp. 271. | ||
آمار تعداد مشاهده مقاله: 1,534 تعداد دریافت فایل اصل مقاله: 1,156 |