تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,131 |
تعداد مشاهده مقاله | 4,251,714 |
تعداد دریافت فایل اصل مقاله | 2,846,060 |
بهبود شناسایی گسلها با تلفیق شبکه عصبی پرسپترون چندلایه و نشانگرهای لرزهای غیرمتعارف | ||
نشریه مهندسی منابع معدنی | ||
مقاله 1، دوره 6، شماره 3 - شماره پیاپی 21، مهر 1400، صفحه 1-25 اصل مقاله (2.02 M) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jmre.2021.12023.1334 | ||
نویسندگان | ||
معصومه لطفی1؛ عبدالرحیم جواهریان* 2، 3 | ||
1دانشجوی دکتری، دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران | ||
2استاد، دانشکده مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران | ||
3استاد، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران | ||
تاریخ دریافت: 22 آبان 1398، تاریخ بازنگری: 08 اسفند 1399، تاریخ پذیرش: 08 اسفند 1399 | ||
چکیده | ||
تفسیر گسلها و شکستگیها به عنوان یکی از مراحل کلیدی در تفسیر لرزهای درک مناسبی از خواص ایستا و پویای مخزن ارایه میدهد. مطالعه نشانگرهای لرزهای هندسی و ترکیب آنها بر اساس شبکه عصبی مصنوعی، سیستمهای فازی و توسعه روشهای شناسایی خودکار لبه مبتنی بر روشهای هوش مصنوعی از جمله مطالعات انجام گرفته در خصوص شناسایی خودکار گسلها و شکستگیها است. در این مطالعه از تلفیق نتایج حاصل از شبکه عصبی مصنوعی پرسپترون چندلایه با الگوریتم پسانتشار و نشانگرهای لرزهای غیرمتعارف (مانند نشانگرهای درستنمایی گسل، چگالی، قرابت و شیب شکستگی) جهت بهبود نتایج تفسیر ساختمانی استفاده شده است. طرحواره پیشنهادی بر روی یک داده مصنوعی دو بعدی با نسبت نشانک به نوفه ۲ و یک داده لرزهنگاری سه بعدی در بردارنده رویداد گسلش اجرا شد. نتایج نشان داد که طرحواره پیشنهادی نسبت به نتایج حاصل از شبکه عصبی مصنوعی پرسپترون چندلایه، ضمن تاثیرپذیری کمتر نسبت به نوفه پسزمینه لبههای موجود در دادههای مورد مطالعه را با تفکیکپذیری نسبتا بالایی شناسایی کرده است. انطباق نتایج حاصل از تلفیق شبکه عصبی مصنوعی پرسپترون چندلایه و نشانگر درستنمایی گسل با نتایج حاصل از وارونسازی رنگی داده لرزهای، به عنوان یک روش وارونسازی کارآمد، حاکی از اعتبار بالای طرحواره پیشنهادی است. استخراج خودکار موقعیت فضایی صفحه گسلش در مقایسه با نتایج حاصل از تفسیر دستی، ضمن کاهش ۷۰ درصد زمان تفسیر، تصویر دقیقتری از محدوده گسل مورد مطالعه ارایه داده است. | ||
کلیدواژهها | ||
گسل ها؛ داده لرزه ای سه بعدی؛ نشانگرهای لرزه ای متعارف؛ شبکه عصبی مصنوعی؛ نشانگرهای لرزه ای غیرمتعارف | ||
عنوان مقاله [English] | ||
Enhancing Fault Detection Using Multi-layer Perceptron Neural Network and Unconventional Seismic Attributes | ||
نویسندگان [English] | ||
M. Lotfi1؛ A. Javaherian2، 3 | ||
1Ph.D Student, Dept. of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran | ||
2Professor, Dept. of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran | Professor, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
3Professor, Dept. of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran | Professor, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
Revealing the faults, one of the essential steps in seismic interpretation, provides valuable information for modeling static and dynamic characteristics of hydrocarbon reservoirs. Several methods developed for automatic fault and fracture detection, which seismic attributes integrated with artificial neural networks, and fuzzy systems are the most common ones. In this study, a 3D seismic data set of the F3 Block, offshore Netherland, was utilized for enhanced fault detection using an artificial neural network and unconventional seismic attributes integration. A steering cube was computed using a phase-based dip calculation technique to enhance seismic attributes’ accuracy and target detection capability. The fault enhancement filter, as a combination of the diffusion and median filters, and conventional attributes are modified and redefined along with the dip and azimuth information. A supervised, fully connected multi-layer perceptron neural network was constructed to integrate the previous traditional seismic attributes with optimum parameters to generate a fault probability cube. For an improved interpretation, the fault probability cube is then treated through the unconventional seismic attributes. Finally, the end product is subjected to the voxel connectivity filter to visualize the detected faults’ three-dimensional nature. Our proposed workflow results were superposed with the ones derived from the color-based inversion cube as an accurate inversion method. The proposed automatic fault extraction workflow can yield considerable savings in time and result in a highly detailed mapping of discontinuities. | ||
کلیدواژهها [English] | ||
Faults, 3D seismic data, Conventional seismic attributes, Supervised neural network, Unconventional seismic attributes | ||
مراجع | ||
[1] Priezzhev, I. I., and Schollard, A. (2012). “Faults and fracture detection based on seismic surface orthogonal decomposition”. In 74th EAGE Conference and Exhibition incorporating EUROPEC, Copenhagen, Denmark, 4-7. [2] Wang, S., Yuan, S., Wang, T., Gao, J., and Li, S. (2018). “Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection”. Geophysics, 83(6): O105-O113. [3] Zheng, Z. H., Kavousi, P., and Di, H. B. (2014). “Multiattributes and neural network-based fault detection in 3D seismic interpretation”. Advanced Materials Research, 838: 1497-1502. [4] Qi, J., Lin, T., Zhao, T., Li, F., and Marfurt, K. (2016). “Semisupervised multiattribute seismic facies analysis”. Interpretation, 4(1): SB91-SB106. [5] Henderson, J., Purves, S. J., Fisher, G., and Leppard, C. (2008). “Delineation of geological elements from RGB color blending of seismic attribute volumes”. The Leading Edge, 27(3): 342-350. [6] Boe, T. H., and Daber, R. (2010). “Seismic features and the human eye: RGB blending of azimuthal curvatures for enhancement of fault and fracture interpretation”. In 80th Annual International Meeting, SEG, Expanded Abstracts, 1535-1539. [7] Aqrawi, A. A., and Boe, T. H. (2011). “Improved fault segmentation using dip guided and modified Sobel filter”. In 81st Annual International Meeting, SEG, Expanded Abstracts, 999-1003. [8] Gazar, A. H., Javaherian, A., and Sabeti, H. (2011). “Analysis of effective parameters for semblancebased coherency attributes to detect micro-faults and fractures”. Journal of Seismic Exploration, 20: 23-44. [9] Miller, P., Dasgupta, S., and Shelander, D. (2012). “Seismic imaging of migration pathways by advanced attribute analysis, Alaminos Canyon 21, Gulf of Mexico”. Marine and Petroleum Geology, 34(1): 111-118. [10] Hale, D. (2013). “Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images”. Geophysics, 78(2): O33-O43. [11] Jaglan, H., Qayyum, F., and Hélène, H. (2015). “Unconventional seismic attributes for fracture characterization”. First Break, 33(3): 101-109. [12] Wu, X., and Hale, D. (2016). “Automatically interpreting all faults, unconformities, and horizons from 3D seismic images”. Interpretation, 4(2): T227-T237. [13] Wu, X. (2017). “Directional structure-tensorbased coherence to detect seismic faults and channels”. Geophysics, 2(82): A13-A17. [14] Noori, M., Hassani, H., Javaherian, A., Amindavar, H., and Torabi, S. (2019). “Automatic fault detection in seismic data using Gaussian process regression”. Journal of Applied Geophysics, 163: 117-131. [15] Pedersen, S. I., Randen, T., Sonneland, L., and Steen, Ø. (2002). “Automatic fault extraction using artificial ants”. In SEG Expanded Technical Program Abstracts, 512-515. [16] Bernáth, G. (2012). “Identification of fracture zones in a tight gas reservoir”. Conference & Exhibition on Earth Sciences and Environmental Protection, 15-20. [17] Roberts, A. (2001). “Curvature attributes and their application to 3D interpreted horizons”. First break, 2(19): 85-100. [18] Chehrazi, A., Rahimpour-Bonab, H., and Rezaee, M. R. (2013). “Seismic data conditioning and neural network-based attribute selection for enhanced fault detection”. Petroleum Geoscience, 19(2): 169-183. [19] Chopra, S., and Marfurt, K. J. (2007). “Seismic attributes for prospect identification and reservoir characterization”. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers. [20] Tingdahl, K. M., and De Rooij, M. (2005). “Semiautomatic detection of faults in 3D seismic data”. Geophysical Prospecting, 53(4): 533-542. [21] منهاج، م. ب.؛ 1381؛ "مبانی شبکههای مصنوعی". انتشارات دانشگاه صنعتی امیرکبیر، جلد اول، ص 21-29. [22] Brouwer, F., and Huck, A. (2011). “An integrated workflow to optimize discontinuity attributes for the imaging of faults”. 31st annual GCSSEPM Foundation Bob F.Perkins Research Conference, Hoston, Texas, United States, 31: 496-532. [23] Beale, M. H., Hagan, M. T., and Demuth, H. B. (2010). “Neural network toolbox”. User’s Guide, MathWorks, 2: 129-203. [24] Bakulin, A., Grechka, V., and Tsvankin, I. (2000). “Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set”. Geophysics, 65(6): 1788-1802. [25] Pegrum, R. M., and Spencer, A. M. (1990). “Hydrocarbon plays in the northern North Sea”. Geological Society, London, Special Publications, 50(1): 441-470. [26] Karbalaali, H., Javaherian, A., Dahlke, S., and Torabi, S. (2018). “Channel edge detection using 2D complex shearlet transform: a case study from the South Caspian Sea”. Exploration Geophysics, 49(5):704-712. [27] dGB plugins user documentation, OpendTect workflow tools (version 5.0), 2015. [28] Lancaster, S., and Whitcombe, D. (2000). “Fast-track ‘coloured’ inversion”. In 70th Annual International Meeting, SEG, Expanded Abstracts, 1572-1575. | ||
آمار تعداد مشاهده مقاله: 549 تعداد دریافت فایل اصل مقاله: 529 |