تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,429 |
تعداد دریافت فایل اصل مقاله | 2,845,853 |
Expression profile of some important genes related to carbohydrates metabolism under drought stress in bean (Phaseolus vulgaris L.) | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 9، شماره 2 - شماره پیاپی 18، دی 2020، صفحه 94-106 اصل مقاله (555.63 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2021.15560.1299 | ||
نویسندگان | ||
Maryam Boroujerdnia* 1؛ ءMohammad Reza Bihamta2؛ ,Khalil Alami Said3؛ Vahid Abdossi4 | ||
1Date Palm and Tropical Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P. O. Box: 43451-43899, Ahwaz, Iran. | ||
2Department of Agronomy and Plant Breeding, Faculty of Agriculture, Tehran University, Karaj, Iran. | ||
3Department of Plant Breeding, Faculty of Agriculture, Khuzestan Ramin Agriculture and Natural Resources University, Iran. | ||
4Department of Horticultural Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
تاریخ دریافت: 14 خرداد 1400، تاریخ بازنگری: 30 آبان 1400، تاریخ پذیرش: 07 آذر 1400 | ||
چکیده | ||
This study was carried out to investigate the influence of drought stress during the flowering stage, on the content of water soluble carbohydrates and the expression of genes related to carbohydrate metabolic enzymes (FBPA, FBPase, PGM, PRK, RBCL, RBCS, SBPase, TK, TPI, and GAPDH) in bean (Phaseolus vulgaris L.) leaves. A factorial experiment was conducted based on a randomized complete block design with four replications. Factors included different bean cultivars, Taylor and COS16 (as tolerant cultivars), Khomein and Akhtar (as sensitive cultivars), drought stress included normal irrigation (100% FC) (available water), moderate stress conditions (60% FC), and high stress conditions (30% FC) and stress duration. Significant differences were observed among cultivars and levels of drought stress in carbohydrates content and gene expression. Drought stress caused a decrease in sucrose and an increase in water soluble carbohydrate concentration, glucose, and fructose. These analyses revealed that expression levels of most genes encoding chloroplast enzymes involved in carbon fixation (Calvin cycle) were reduced in the leaves during prolonged drought stress. The expression levels of most genes were higher in tolerant cultivars compared to susceptible ones under drought conditions. Calvin cycle related genes expression showed significant negative correlations with water soluble carbohydrates concentration, glucose, and fructose. In deficient water condition, tolerant cultivars (Taylor and COS16) accumulated more soluble sugars, and Khomein and Akhtar as susceptible cultivars had the lowest soluble sugar in both conditions. The soluble sugar content of different bean cultivars was typically increased, showing that sugar metabolism was influenced greatly by soil water stress. | ||
کلیدواژهها | ||
Bean؛ Calvin cycle؛ Carbohydrate metabolism؛ Drought stress؛ Gene expression | ||
عنوان مقاله [English] | ||
الگوی بیان برخی از ژن های مهم مرتبط با متابولیسم کربوهیدرات ها تحت تنش خشکی در لوبیا | ||
نویسندگان [English] | ||
مریم بروجردنیا1؛ محمدرضا بی همتا2؛ خلیل عالمی سعید3؛ وحید عبدوسی4 | ||
1پژوهشکده خرما ومیوههای گرمسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات،آموزش وترویج کشاورزی، اهواز، ایران، کد پستی: 43451-43899, | ||
2گروه اصلاح نباتات، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران. | ||
3دانشگاه کشاورزی و منابع طبیعی رامین، گروه اصلاح نباتات، رامین، ایران. | ||
4گروه باغبانی، دانشکده کشاورزی، دانشگاه آزاد اسلامی علوم و تحقیقات، تهران، ایران. | ||
چکیده [English] | ||
این مطالعه بهمنظور بررسی اثر تنش خشکی در طی مرحله گلدهی بر روی محتوی کربوهیدرات محلول در آب و بیان ژنهای مربوط به متابولیسم کربوهیدراتها (FBPA، FBPase، PGM، PRK، RBCL، RBCS، SBPase، TK، TPI و GAPDH) در برگهای لوبیا انجام شد. این آزمایش، بهصورت فاکتوریل بر پایه بلوکهای کاملا تصادفی در 4 تکرار انجام شد. فاکتورها؛ شامل ارقام مختلف لوبیا، (Taylor و COS16 ارقام مقاوم)، خمین و اختر (ارقام حساس)، تنش خشکی؛ شامل آبیاری نرمال (100% ظرفیت زراعی)، تنش متوسط (60% ظرفیت زراعی) و تنش شدید (30% ظرفیت زراعی) و مدتزمان تنش (3 و 9 روز). بیان ژنهای FBPA، FBPase، PGM، PRK، RBCL، RBCS، SBPase، TK،TPI و GAPDH با استفاده از qRT-PCR مورد ارزیابی قرار گرفت. بین ارقام و سطوح تنش خشکی در میزان کربوهیدراتها و بیان ژنها اختلاف معنیداری مشاهده گردید. تنش خشکی باعث کاهش ساکارز و افزایش کربوهیدراتهای محلول کل، فروکتوز و گلوکز شد. میزان بیان اغلب ژنهای کدکننده آنزیمهای کلروپلاستی مربوط به تثبیت کربن (سیکل کلوین) تحت تنش خشکی در برگها کاهش یافت. تحت تنش خشکی میزان رونوشتبرداری از اغلب ژنها در ارقام مقاوم بیشتر از حساس بود. همبستگی منفی معنیداری بین بیان نسبی ژنهای سیکل کلوین و کربوهیدراتهای محلول آب، محتوای فروکتوز و گلوکز وجود داشت. در شرایط تنش آبی، ارقام مقاوم (Taylor و COS16) کربوهیدراتهای محلول بیشتری انباشته کردند و ارقام خمین و اختر (ارقام حساس)، کربوهیدرات محلول کمتری در هر دو شرایط تنش داشتند. بنابراین متابولیسم کربوهیدراتها عموما تحت تأثیر تنش آبی خاک قرار میگیرد. | ||
کلیدواژهها [English] | ||
لوبیا, تنش خشکی, بیان ژن, متابولیسم کربوهیدراتها, سیکل کلوین | ||
مراجع | ||
Bajji M., Lutts S., and Kinet J. M. (2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science, 160: 669–681. Bartels D., and Salamini F. (2001). Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiolohy, 127: 1346–1353. Bartels D., and Sunkar R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24: 23–58. Blum A. (1989). Osmotic adjustment and growth of barley genotypes under drought stress. Crop Science, 29: 230–233. Bray E. A. (2002). Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Annals of Botany, 89: 803–811. Chaves M. M. (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42: 1–16. Chaves, M. M., Maroco J. P., and Pereira J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 30: 239–264. Chaves, M. M., and Oliveira M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55: 2365–2384. Chaves M. M., Pereira J. S., Maroco J., Rodrigues M. L., Ricardo C. P. P., Osório M. L., Carvalho I., Faria T., and Pinheiro C. (2002). How plants cope with water stress in the field: photosynthesis and growth. Annals of Botany, 89: 907–916. Cornic G. (1994). Drought stress and high light effects on leaf photosynthesis. In: Baker N. R., Bowyer J. R., Eds. Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Oxford: Bios, 297–313. Dubois D., Gilleres K. A., Hamilton J. K., Rebers P. A, and Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350–356. Faical B., Imen A., Kaouther F., Moez H., Habib K., and Khaled M. (2009). Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L.) varieties showing contrasting tolerance to salt stress. Acta Physiologiae Plantarum, 31: 145–154. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185–212. Hare P. D., Cress W. A., and Vanstaden J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell Environment, 21: 535–553. Ho S. L., Chao Y. C., Tong W. F., Yu S. M. (2001). Sugar coordinately and differentially regulates growth and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiology, 125: 877–890. Kaur K., Gupta A. K., and Kaur N. (2007). Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. Indian Journal of Biochemistry and Biophysics, 44: 223–230. Keller F., and Ludlow M. M. (1993). Carbohydrate metabolism in drought stressed leaves of pigeon pea (Cajanus cajan). Journal of Experimental Botany, 44(8): 1351–1359. Lawlor D. W., and Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25: 275–294. Li Y., Lee K. K., Walsh S., Smith C., Hadingham S., Sorefan K., Cawley G., and Bevan M. W. (2006). Establishing glucose and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Research, 16: 414–427. Livak K. J., and Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 25: 402–408. Monakhova O. F., and Chernyadev I. I. (2002). Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied Biochemistry Microbiology, 38: 373–380. Omae H., Kumar A., Egawa Y., Kashiwaba K., and Shono M. (2005). Genotypic differences in plant water status and relationship with reproductive responses in snap bean (Phaseolus vulgaris L.) during water stress. Japanese Journal of Tropical Agriculture, 49: 1–7. Parsons L. R, and Howe T. K. (1984). Effects of water stress on the water relations of Phaseolus vulgaris and the drought resistant Phaseolus acutifolius. Physiologia Plantarum, 60: 197–202. Price J., Laxmi A., Martin S. K. S., and Jang J. C. (2004).Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. The Plant Cell, 16(8): 2128–2150. Rosales-Serna R., Kohashi-Shibat J., Acosta-Gallegos J. A., Trejo-Lopez C., Ortiz-Cereceres J., and Kelly J. D. (2004). Biomass distribution, maturity acceleration and yield in drought stressed common bean cultivars. Field Crops Research, 85: 203–211. Sinclair T., and Ludlow, M. (1985). Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Australian Journal of Plant Physiology, 12: 213–217. Su J., and Wu R. (2004). Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science, 166: 941–948. Torres G. A. M., Pflieger S., Corre-Menguy F., Mazubert C., Hartmann C., and Lelandais-Brière C. (2006). Identification of novel drought-related mRNAs in common bean roots by differential display RT-PCR. Plant Science, 171: 300–307. Valentovic P., Luxova M., Kolarovic L., and Gasparikova O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil Environment, 52(4): 186–191. Xue G., Lynne McIntyre C., Glassop, D., and Shorter, R. (2008). Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology, 67: 197–214. Yamaguchi-Shinozaki K., and Shinozaki K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57: 781–803. Zhu J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247–273. Zlatev Z., and Stoyanov Z. (2005). Effects of water stress on leaf water relations of young bean plants. Journal of Central European Agriculture, 6: 5–14. | ||
آمار تعداد مشاهده مقاله: 364 تعداد دریافت فایل اصل مقاله: 218 |