تعداد نشریات | 19 |
تعداد شمارهها | 370 |
تعداد مقالات | 3,043 |
تعداد مشاهده مقاله | 4,112,669 |
تعداد دریافت فایل اصل مقاله | 2,743,413 |
Molecular diversity and genetic structure of rainfed durum wheat genotypes using SCoT markers | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 9، شماره 2 - شماره پیاپی 18، دی 2020، صفحه 115-125 اصل مقاله (608.91 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2022.16475.1307 | ||
نویسندگان | ||
Zahra Morado Kheibari Moradi Kheibari1؛ Reza Azizinezhad* 1؛ Ali Mehras Mehrabi2؛ Mahmood Khosrowshahli1؛ Alireza Etminan2 | ||
1Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, P. O. Box: 31749-55433, Tehran, Iran. | ||
2Department of Biotechnology and Plant Breeding, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. | ||
تاریخ دریافت: 17 آبان 1400، تاریخ بازنگری: 18 اسفند 1400، تاریخ پذیرش: 23 فروردین 1401 | ||
چکیده | ||
Selection- and conservation-based breeding programs require the study of genetic diversity. In this study, a collection of durum wheat consisting of 90 rainfed genotypes was subjected to the analysis of genetic diversity and population structure based on polymorphisms obtained from the Start Codon Targeted (SCoT) marker system. Out of 26 initial primers tested, 15 primers produced scorable polymorphism and were therefore, selected for further analyses. On average, 11.27 polymorphic fragments were observed for each primer per reaction. Polymorphism Information Content (PIC) ranged from 0.10 to 0.32 per locus with an average of 0.23 per primer. Resolving power (Rp) was varied from 0.98 to 5.80. The structure analysis classified the assessed population into 3 subpopulations. Besides, the Neighbor-Joining phylogenetic tree and Principal Coordinate Analysis separated genotypes into 3 and 5 distinct clusters. The Analysis of Molecular Variance (AMOVA) revealed high intra-population diversity. The gene flow index (Nm) indicated a relatively small probability of gene flow between the studied subsets. The Nei’s gene diversity (n), Shannon’s information index (I), and allele distribution statistics revealed that the individuals of subpopulation-2 had a significant capacity for genetic diversity. In conclusion, the studied SCoT primers had a high discriminating power and therefore, were efficient for evaluating genetic diversity in the durum wheat. The results of this study revealed the existence of a significant genetic diversity between the studied genotypes. Besides, the individuals of subpopulation-2 had a notable level of genetic diversity that can be used for various breeding purposes. | ||
کلیدواژهها | ||
Gene flow؛ Inter-population differentiation؛ Neighbor-Joining algorithm؛ Principal Coordinate Analysis | ||
عنوان مقاله [English] | ||
تنوع مولکولی و ساختار ژنتیکی ژنوتیپ های گندم دوروم دیم با استفاده از نشانگرهای SCoT | ||
نویسندگان [English] | ||
زهرا مرادی خیبری1؛ رضا عزیزی نژاد1؛ علی مهراس مهرابی2؛ محمود خسروشاهلی1؛ علیرضا اطمینان2 | ||
1گروه بیوتکنولوژی و بهنژادی گیاهی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران، کدپستی: 31749-55433. | ||
2گروه بیوتکنولوژی و بهنژادی گیاهی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران. | ||
چکیده [English] | ||
برنامههای اصلاحی مبتنی بر انتخاب و حفاظت از ژرم پلاسم، نیازمند مطالعه تنوع ژنتیکی هستند. در این تحقیق، تنوع ژنتیکی و ساختار جمعیت مجموعهای متشکل از 90 ژنوتیپ گندم دوروم دیم بر اساس چندشکلیهای بدستآمده از سیستم نشانگر هدفمند کدون آغاز (SCoT) مورد تجزیه و تحلیل قرار گرفت. از بین 26 آغازگر اولیه آزمایش شده، 15 آغازگر چندشکلی مقیاسپذیر ایجاد کردند و بنابراین انتخاب شدند. بهطور متوسط در هر واکنش، 11.27 نوار چندشکل برای هر آغازگر مشاهده شد. محتوای اطلاعات چندشکلی از 0.10 تا 0.32 در هر مکان با میانگین 0.23 در هر آغازگر متغیر بود. قدرت تفکیک آغازگرها از 0.98 تا 5.80 ثبت شد. تجزیه و تحلیل ساختار، جمعیت مورد مطالعه را به 3 زیرجمعیت طبقهبندی کرد. علاوه بر این، تجزیه خوشهای و تجزیه مختصات اصلی، ژنوتیپها را به 3 و 5 خوشه مجزا تقسیم کردند. تجزیه و تحلیل واریانس مولکولی، تنوع درونجمعیتی بالایی را نشان داد. شاخص جریان ژنی احتمال نسبتاً کمی از جریان ژنی بین زیر مجموعههای مورد مطالعه را نشان داد. تنوع ژنی Nei، شاخص اطلاعات شانون و توزیع آللها نشان داد که افراد زیرجمعیت-2 از تنوع ژنتیکی بالایی برخوردار بودند. پرایمرهای SCoT مورد مطالعه، قدرت تفکیک قابل قبولی نشان دادند؛ بنابراین برای ارزیابی تنوع ژنتیکی در گندم دوروم، کارآمد بودند. علاوه بر این، افراد زیرجمعیت-2، دارای سطح قابل توجهی از تنوّع ژنتیکی بودند که میتوان از آن برای اهداف اصلاحی مختلف استفاده کرد. | ||
کلیدواژهها [English] | ||
جریان ژنی, تمایز بین جمعیتی, الگوریتم ادغام همسایه ها, تحلیل مختصات اصلی | ||
مراجع | ||
Alemu A., Feyissa T., Letta T., and Abeyo B. (2020). Genetic diversity and population structure analysis based on the high density SNP markers in Ethiopian durum wheat (Triticum turgidum ssp. durum). BMC Genetics, 21: 18. DOI: https://doi.org/10.1186/s12863-020-0825-x. Amom T., Tikendra L., Apana N., Goutam M., Sonia P., Koijam A. S., Potshangbam A. M., Rahaman H., and Nongdam P. (2020). Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry, 174: 112330. Beres B. L., Rahmani E., Clarke J. M., Grassini P., Pozniak C. J., Geddes C. M., Porker K. D., May W. E., and Ransom J. K. (2020). A systematic review of durum wheat: Enhancing production systems by exploring genotype, environment, and management (G×E×M) Synergies. Frontiers in Plant Science, 11: 568657. Collard B. C. Y., and Mackill D. J. (2008). Start codon Targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27: 86. DOI: https://doi.org/10.1007/s11105-008-0060-5. Earl D. A., and vonHoldt B. M. (2012). Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genetics Resources, 4: 359–361. Etminan A., Pour-Aboughadareh A., Mohammadi R., Ahmadi-Rad A., Noori A., Mahdavian Z., and Moradi Z. (2016). Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnology & Biotechnological Equipment, 30: 1075–1081. Evanno G., Regnaut S., and Goudet J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14: 2611–20. Heidari P., Etminan A., Azizinezhad R., and Khosroshahli M. (2017). Genomic variation studies in durum wheat (Triticum turgidum ssp. durum) using CBDP, SCoT and ISSR markers. Indian Journal of Genetics and Plant Breeding, 77: 379–386. Hennink S., and Zeven A. (1990). The interpretation of Nei and Shannon-Weaver within population variation indices. Euphytica, 51: 235–240. Iles M. M., Walters K., and Cannings C. (2003). Recombination can evolve in large finite populations given selection on sufficient loci. Genetics, 165: 2249–2258. Jlassi I., Bnejdi F., Saadoun M., Hajji A., Mansouri D., Ben-Attia M., El-Gazzah M., and El-Bok S. (2021). SSR markers and seed quality traits revealed genetic diversity in durum wheat (Triticum durum Desf.). Molecular Biology Reports, 48: 3185–3193. Karaca M. (2008). Comparative analysis of genetic diversity in Turkish durum wheat cultivars using RAPD and ISSR markers. Journal of Food, Agriculture & Environment, 6(3-4): 219–225. Khang N. H. M., Quang N. T., Mai H. N. X., Phuong N. D. N., Thao N. P., and Quoc N. B. (2022). Genetic characterization of coconut (Cocos nucifera L.) varieties conserved in Vietnam through SCoT marker-based polymorphisms. Genetic Resources and Crop Evolution, 69: 385–398. DOI: https://doi.org/10.1007/s10722-021-01237-x. Kumar J., and Agrawal V. (2019). Assessment of genetic diversity, population structure and sex identification in dioecious crop, Trichosanthes dioica employing ISSR, SCoT and SRAP markers. Heliyon, 5: e01346-e01346. Lotti C., Salvi S., Pasqualone A., Tuberosa R., and Blanco A. (2000). Integration of AFLP markers into an RFLP-based map of durum wheat. Plant Breeding, 119: 393–401. Medini M., Hamza, S., Rebai, A., and Baum, M. (2005). Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genetic Resources and Crop Evolution, 52: 21–31. Meirmans P. G., and Hedrick P. W. (2011). Assessing population structure: FST and related measures. Molecular Ecology Resources, 11: 5–18. Mohammadi R., and Amri A. (2013). Genotype×environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica, 192: 227–249. Murray M. G., and Thompson W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321–5. Nadeem M. A., Nawaz M. A., Shahid M. Q., Doğan Y., Comertpay G., Yıldız M., Hatipoğlu R., Ahmad F., Alsaleh A., Labhane N., Özkan H., Chung G., and Baloch F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32: 261–285. Negisho K., Shibru S., Pillen K., Ordon F., and Wehner G. (2021). Genetic diversity of Ethiopian durum wheat landraces. Plos one, 16: e0247016. Nei M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12): 3321–3. DOI: 10.1073/pnas.70.12.3321. Nouraein M., Khavari-Khorasani S., and Akhavan M. (2020). Screening cumin (Cuminum cyminum L.) landraces for resistance to Fusarium oxysporum f. sp. cumini. Australasian Plant Pathology, 49: 295–305. Peakall R., and Smouse P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics (Oxford, England), 28: 2537–2539. Romano A., Ferranti P., Gallo V., and Masi P. (2021). New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Current Opinion in Food Science, 41: 249–259. Serrote C. M. L., Reiniger L. R. S., Silva K. B., Rabaiolli S. M. d. S., and Stefanel C. M. (2020). Determining the polymorphism information content of a molecular marker. Gene, 726: 144175. Sharma P., Mehta G., Shefali, Muthusamy S. K., Singh S. K., and Singh G. P. (2021). Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding. Molecular Biology Reports, 48: 381–393. Shaygan N., Etminan A., Majidi Hervan I., Azizinezhad R., and Mohammadi R. (2021). The study of genetic diversity in a minicore collection of durum wheat genotypes using agro-morphological traits and molecular markers. Cereal Research Communications, 49: 141–147. Soleimani V. D., Baum B. R., and Johnson D. A. (2002). AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theoretical and Applied Genetics, 104: 350–357. Varvio S.-L., Chakraborty R., and Nei M. (1986). Genetic variation in subdivided populations and conservation genetics. Heredity, 57: 189–198. | ||
آمار تعداد مشاهده مقاله: 205 تعداد دریافت فایل اصل مقاله: 276 |