تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,470 |
تعداد دریافت فایل اصل مقاله | 2,845,928 |
Is it possible to restore the reduced coenzyme Q10 production of a varied strain of Gluconobacter? | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 10، شماره 1 - شماره پیاپی 19، تیر 2021، صفحه 31-37 اصل مقاله (711.32 K) | ||
نوع مقاله: Short Communication | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2022.16642.1310 | ||
نویسندگان | ||
Fouzieh Moghaddami1؛ Ramin Hosseini* 2 | ||
1Department of Biology, Payame Noor University, Tehran, Iran. | ||
2Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran. | ||
تاریخ دریافت: 05 دی 1400، تاریخ بازنگری: 23 خرداد 1401، تاریخ پذیرش: 23 خرداد 1401 | ||
چکیده | ||
Different strains of a bacterial culture can undergo phenotypic variation upon continuous passages. These changes often cause a reduction or loss of bacterial metabolic potential and ultimately lead to a decrease in production yield. The aim of this study was to address this question; is it possible to restore the reduced coenzyme Q10 production of a varied strain of Gluconobacter to a higher level? The main strain studied in this study was Gluconobacter japonicus FM10, from which the FM20 strain was obtained. FM20 strain was a varied strain whose ability on coenzyme Q10 production was reduced during some continuous passages. FM30 strain was obtained from FM20 strain by restricting the available oxygen. The amount of coenzyme Q10 produced by all three strains was measured. The activities of glycerol dehydrogenase and sorbitol dehydrogenase were also measured. The results showed that coenzyme Q10 production in FM30 strain that had been exposed to restricted oxygen was several times higher (6.3 mg/L) than the varied FM20 strain (0.8 mg/L), and even the original FM10 strain (2.7 mg/L). The investigation of the enzymes activities showed that glycerol dehydrogenase and sorbitol dehydrogenase activities of FM30 strain were higher than those of the others (0.66 and 0.52 U mg-1, respectively). It can be concluded that by using some strategies, the metabolic potential of some varied strains can be restored. For strictly aerobic bacteria, Gluconobacter, the oxygen restriction may be an effective strategy for the restoration of coenzyme Q10 production ability. | ||
کلیدواژهها | ||
Gluconobacter؛ Coenzyme Q10؛ variation؛ Dehydrogenase؛ thermotolerant | ||
عنوان مقاله [English] | ||
آیا امکان بازیابی توانایی تولید کوآنزیم Q10 در سویه تغییر یافته ای از Gluconobacter وجود دارد؟ | ||
نویسندگان [English] | ||
فوزیه مقدمی1؛ رامین حسینی2 | ||
1گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران. | ||
2گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران. | ||
چکیده [English] | ||
سویه های مختلف یک کشت باکتریایی می توانند بر اثر کشتهای مکرر دچار تغییرات فنوتیپی شوند. این تغییرات اکثرا سبب کاهش یا از دست رفتن قدرت متابولیکی باکتری و نهایتا منجر به کاهش راندمان تولید میگردد. هدف از این مطالعه پرداختن به این سوال بود که آیا می توان در یک سویه تغییر یافته از Gluconobacter که تولید کوآنزیم Q10 در آن کاهش یافته است را به سطح بالاتر بازگرداند؟ سویه اصلی مورد بررسی در این پژوهش Gluconobacter japonicus FM10 نام داشت که سویه FM20 از آن به دست آمد. سویه FM20 سویهای تغییر یافته ای بود که توانایی آن در تولید کوآنزیم Q10 طی چندین پاساژ کاهش یافته بود. سویه FM30 نیز از طریق محدود کردن اکسیژن موجود در محیط کشت از سویه FM20 بدست آمد. مقدار کوآنزیم Q10 تولید شده توسط هر سه سویه و نیز فعالیت گلیسرول دهیدروژناز و سوربیتول دهیدروژناز اندازهگیری شد. تولید کوآنزیم Q10 در سویه FM30 که در شرایط کمبود اکسیژن قرار گرفته بود چند برابر (3/6 میلیگرم در لیتر) سویه تغییر یافته یا FM20 (8/0 میلیگرم در لیتر) و حتی سویه اصلی یا FM10 (7/2 میلیگرم در لیتر) بود. همچنین، فعالیت گلیسرول دهیدروژناز و سوربیتول دهیدروژناز در سویه FM30 بیشتر از سایرین بود (به ترتیب 66/0 و 52/0 میلی گرم بر واحد). میتوان نتیجه گرفت که با استفاده از برخی راهکارها می توان پتانسیل متابولیک سویه های تغییر یافته را بازیابی کرد. برای باکتری کاملاً هوازیGluconobacter ، محدود کردن اکسیژن ممکن است راهکار مناسبی جهت بازیابی توانایی تولید کوآنزیم Q10 باشد. | ||
کلیدواژهها [English] | ||
Gluconobacter, کوآنزیم Q10, تغییر یا variation, دهیدروژناز, مقاوم به حرارت | ||
مراجع | ||
Azizi P., Hanafi M. M., Sahebi M., Harikrishna J. A, Taheri S., Yassoralipour A., and Nasehi A. (2020). Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. Functional Plant Biology, 47(6): 508-23. Ahmed T. A., Alsamaraee S. A., Zaidan H. Z., and Elmeer K. (2012). Inter-simple sequence repeat (ISSR) analysis of somaclonal variation in date palm plantlets regenerated from callus. In: Second International Conference on Environment and Industrial Innovation, IPCBEE, 126-130. Aliasl J., Khoshzaban F., Barikbin B., Naseri M., Kamalinejad M., Emadi F., Razzaghi Z., Talei D., Yousefi M., Aliasl F., Barati M., Mohseni-Moghaddam P., Hasheminejad S. A., and Nami H. E. (2014). Comparing the healing effects of Arnebia euchroma ointment with petrolatum on the ulcers caused by fractional CO2 laser: a single-blinded clinical trial. Iranian Red Crescent Medical Journal, 16(10): e16239. DOI: 10.5812/ircmj.16239. Armijos-González R., Espinosa-Delgado L., and Cueva-Agila A. (2021). Indirect shoot regeneration using 2,4-D induces somaclonal variations in Cinchona officinalis. Floresta e Ambiente, 28(3): e20210017. Asadi A., and Shooshtari L. (2021). Assessment of somaclonal variation in micropropagation of Damask Rose (Rosa damascena Mill.) using molecular markers. Modern Genetics Journal (MGJ), 15(4): 327-335. (In Persian). Bairu M. W., Aremu A. O., and Van Staden J. (2011). Somaclonal variation in plants: causes and detection methods. Plant Growth Regulation, 63: 147-173. Bairu M. W., Fennell C. W., and Van Staden J. (2006). The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv.‘Zelig’). Scientia Horti-culturae, 108: 347-351. Bennici A., Anzidei M., and Vendramin G. G. (2004). Genetic stability and uniformity of Foeniculum vulgare Mill. regenerated plants through organogenesis and somatic embryogenesis. Plant Science, 166: 221-227. Côte F. X., Teisson C., and Perrier X. (2001). Somaclonal variation rate evolution in plant tissue culture: Contribution to understanding through a statistical approach. In Vitro Cellular & Developmental Biology-Plant, 37: 539-542. De la Rosa R., James C. M., and Tobutt K. R. (2002). Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Molecular Ecology Notes, 2(3): 265-267. DOI: https://doi.org/10.1046/j.1471-8286.2002.00217.x. Devi S. P., Kumaria S., Rao S. R., and Tandon P. (2014). Single primer amplification reaction (SPAR) methods reveal subsequent increase in genetic variations in micropropagated plants of Nepenthes khasiana Hook. f. maintained for three consecutive regenerations. Gene, 538: 23-29. DOI: 10.1016/j.gene.2014.01.028. Erişen S., Kurt-Gür G., and Servi H. (2020). In vitro propagation of Salvia sclarea L. by meta-Topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Industrial Crops and Products, 157: 112892. Ezati T., Marefatjoo M. J., Haghbeen K., and Ahmadkhaniha R. (2015). Successful indirect regeneration of Arnebia pulchra (Roemer and Schultes) as medicinal plant. Journal of Medicinal Plants and By-products, 4(2): 233-242. DOI: 10.22092/JMPB.2015.108914. Goodarzi F., Darvishzadeh R., and Hassani A. (2015). Genetic analysis of castor (Ricinus communis L.) using ISSR markers. Journal of Plant Molecular Breeding, 3: 18-34. Gostimsky S., Kokaeva Z., and Konovalov F. (2005). Studying plant genome variation using molecular markers. Russian Journal of Genetics, 41: 378-388. Haghbeen K., Mozaffarian V., Ghaffari F., Pourazeezi E., Saraji M., and Joupari M. (2006). Lithospermum officinale callus produces shikalkin. Biologia, 61: 463-467. Hosseini A., Mirzaee F., Davoodi A., Jouybari H. B., and Azadbakht M. (2018). The traditional medicine aspects, biological activity and phytochemistry of Arnebia spp. Medicinski Glasnik, 15(1): 1-9. Doi: 10.17392/926-18. Hrahsel L., Basu A., Sahoo L., and Thangjam R. (2014). In vitro propagation and assessment of the genetic fidelity of Musa acuminata (AAA) cv. Vaibalhla derived from immature male flowers. Applied Biochemistry and Biotechnology, 172(3): 1530-1539. Jin S., Mushke R., Zhu H., Tu L., Lin Z., Zhang Y., and Zhang X. (2008). Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Reports, 27: 1303-1316. Krishna H., Alizadeh M., Singh D., Singh U., Chauhan N., Eftekhari M., and Sadh R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1): 54. Doi: 10.1007/s13205-016-0389-7. Mohanty S., Panda M., Subudhi E., and Nayak S. (2008). Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophoto-metric analysis. Biologia Plantarum, 52: 783-786 Monfared M. A., Samsampour D., Sharifi-Sirchi G. R., and Sadeghi F. (2018). Assessment of genetic diversity in Salvadora persica L. based on inter simple sequence repeat (ISSR) genetic marker. Journal of Genetic Engineering and Biotechnology, 16: 661-667. Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of indivisuals. Genetics, 23: 341-369. Noormohammadi Z., Kangarloo-Haghighi B., Sheidai M., Farahani F., and Ghasemzadeh-Baraki S. (2014). Genetic stability versus somaclonal variation in tissue culture regenerated olive plants (Olea europea cv. Kroneiki). European Journal of Experimental Biology, 4: 135-142. Peng X., Zhang T-t., and Zhang J. (2015). Effect of subculture times on genetic fidelity, endogenous hormone level and pharmaceutical potential of Tetrastigma hemsleyanum callus. Plant Cell, Tissue and Organ Culture (PCTOC), 122: 67-77. Podwyszynska M. (2005). Somaclonal variation in micropropagated tulips based on phenotype observation. Journal of Fruit and Ornamental Plant Research, 13: 109-122. Rajan R. P., and Singh G. (2021). A review on application of somaclonal variation in important horticulture crops. Plant Cell Biotechnology and Molecular Biology, 10: 161-75. Razani M., Kayat F., Redwan R. M., and Susanto D. (2020). Detection of abnormal banana plantlets produced by high BAP concentration and number of subcultures using representational difference analysis. International Journal of Agriculture and Biology, 23(3): 541-8. Shen X., Chen J., Kane M. E., and Henny R. J. (2007). Assessment of somaclonal variation in Dieffenbachia plants regenerated through indirect shoot organogenesis. Plant Cell Tissue and Organ Culture, 91: 21-27. Smýkal P., Valledor L., Rodriguez R., and Griga M. (2007). Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Reports, 26: 1985-1998. Tikendra L., Potshangbam A. M., Dey A., Devi T. R., Sahoo M. R., and Nongdam P. (2021). RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk. f.-an important endangered orchid. Physiology and Molecular Biology of Plants, 27(2): 341-357. DOI: https://doi.org/10.1007/s12298-021-00939-x. Yadav K., Aggarwal A., and Singh N. (2013). Evaluation of genetic fidelity among micropropagated plants of Gloriosa superba L. using DNA-based markers—A potential medicinal plant. Fitoterapia, 89: 265-270. Zhao F., Liu F., Liu J., Ang P. O., and Duan D. (2008). Genetic structure analysis of natural Sargassum muticum (Fucales, Phaeophyta) populations using RAPD and ISSR markers. Journal of Applied Phycology, 20(2): 191-198. DOI: 10.1007/s10811-007-9207-2. | ||
آمار تعداد مشاهده مقاله: 807 تعداد دریافت فایل اصل مقاله: 167 |