تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,475 |
تعداد دریافت فایل اصل مقاله | 2,845,929 |
Phytosynthesis of magnetite (Fe3O4) nanoparticles using Nepeta bornmuelleri hairy roots | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 10، شماره 1 - شماره پیاپی 19، تیر 2021، صفحه 47-58 اصل مقاله (1.85 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2022.16510.1308 | ||
نویسندگان | ||
Shahla Atabaki1؛ Shahram Pourseyedi* 1؛ Sara Alsadat Rahpeyma1؛ Iraj Tavassolian2 | ||
1Department of Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran. | ||
2Department of Nature Engineering, Shirvan Faculty of Agriculture, University of Bojnord, Bojnord, Iran. | ||
تاریخ دریافت: 26 آبان 1400، تاریخ بازنگری: 29 تیر 1401، تاریخ پذیرش: 30 تیر 1401 | ||
چکیده | ||
Magnetic iron oxide nanoparticles (Fe3O4-NPs) offer numerous applications in agriculture, pharmaceutical, and food industries. In this study, Fe3O4-NPs were effectively phytosynthesized by environmentally friendly hairy root extracts. The A4 strain of Agrobacterium rhizogenesis was used to induce the hairy roots of Nepeta bornmuelleri. Leaves in N. bornmuelleri contain important ingredients such as 1, 8 cineol that is one of the most well-known secondary metabolites. The phytosynthesis of Fe3O4-NPs was verified and described by Ultraviolet-Visible spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The NPs were clustered with a size of less than 20 nm in FESEM analysis and 20-100 nm in TEM and HRTEM analysis. XRD pattern showed a peak of Fe3O4-NPs at 35.28° (220 nm). In the FTIR experiment, amines, alkanes, carbonyls, fluorides, and alcohols were detected as organic molecules involved in the synthesis of NPs. The average size of NPs in their liquid medium was about 53.39 nm, according to DLS analysis. According to TGA analysis, NPs maintained 82% of their weight at a temperature above 700 °C. According to the results of TGA study, Nepeta’s fast-growing hairy roots generated highly pure NPs. TGA analysis revealed that the weight loss of synthesized NPs in hairy roots was smaller than those identical samples produced in the extracts obtained from aerial parts of the plants. The 1, 8 cineol in the hairy root extracts measured by gas chromatography was found to be around 0.001%. | ||
کلیدواژهها | ||
Fe3O4 nanoparticles؛ Hairy root extract؛ Nano-Phyto-synthesis؛ Nepeta bornmuelleri | ||
عنوان مقاله [English] | ||
بیوسنتز نانوذرات مغناطیسی آهن (Fe3O4) با استفاده از ریشه های مویین گیاه Nepeta bornmuelleri | ||
نویسندگان [English] | ||
شهلا اتابکی1؛ شهرام پورسیدی1؛ سارا السادات راه پیما1؛ ایرج توسلیان2 | ||
1گروه بیوتکنولوژی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران. | ||
2گروه مهندسی طبیعت، دانشکده کشاورزی شیروان، دانشگاه بجنورد، بجنورد، ایران. | ||
چکیده [English] | ||
نانوذرات اکسید آهن مغناطیسی (Fe3O4-NPs) کاربردهای وسیعی را در بخشهای کشاورزی، دارویی و غذایی ارائه میکنند. در این کار Fe3O4-NPs با استفاده از یک رویکرد دوستدار محیط زیستی تولید در ریشه مویین، فیتوسنتز شدند. Agrobacterium rhizogenesis، سویه A4 برای القای ریشههای مویین گیاه Nepeta bornmuelleri، در ریزنمونههای برگ استفاده شد. علاوه بر این، فیتوسنتز Fe3O4-NPs با استفاده از طیفسنجی مرئی- فرابنفش، میکروسکوپ الکترونی روبشی نشر میدانی (FESEM)، میکروسکوپ الکترونی عبوری (TEM)، میکروسکوپ الکترونی عبوری با وضوح بالا (HRTEM)، طیفسنجی مادون قرمز تبدیل فوریه (FTIR)، پراش اشعه ایکس (XRD)، پراکندگی نور دینامیکی (DLS)، و تجزیه و تحلیل گرما وزنی (TGA) تأیید و توصیف شدند. نانوذرات با اندازه کمتر از 20 نانومتر در تجزیه و تحلیل FESEM خوشه بندی شدند. نانوذرات با اندازه 20-100 نانومتر در آنالیز TEM و HRTEM خوشه بندی شدند. الگوی XRD پیک در 35.28 درجه نشان میدهد. در آزمایش FTIR، آمین ها، آلکان ها، کربونیل ها، فلوریدها و الکل ها به عنوان مولکول های آلی درگیر در سنتز نانوذرات شناسایی شدند. بر اساس تجزیه و تحلیل DLS، اندازه متوسط نانوذرات در محیط مایع حدود 53.39 نانومتر بود. بر اساس تجزیه و تحلیل TGA، نانوذرات 82 درصد وزن خود را در دمای بالای 700 درجه سانتیگراد حفظ کردند. تجزیه و تحلیل TGA نشان داد که کاهش وزن نانوذرات سنتز شده در ریشههای مویین کمتر از نمونههای مشابه تولید شده در نواحی هوایی عصارههای گیاهی بود. در عصاره ریشه مویین، میانگین 1.8 سینئول با کروماتوگرافی گازی اندازه گیری شد، که حدود 0.001 درصد بود. | ||
کلیدواژهها [English] | ||
نانو بیوسنتز, نانوذرات Fe3O4, عصاره ریشه مویین, Nepeta bornmuelleri | ||
مراجع | ||
Ahmadian Chashmi N., Sharifi M., and Behmanesh M. (2016). Lignan enhancement in hairy root cultures of Linum album using coniferaldehyde and methylenedioxycinnamic acid. Preparative Biochemistry and Biotechnology, 46: 454-460. Alijani H. Q., Pourseyedi S., Torkzadeh Mahani M., and Khatami M. (2019). Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. Journal of Molecular Structure, 1175: 214-218. Alishah H., Pourseyedi S., Ebrahimipour S. Y., Mahani S. E., and Rafiei N. (2017). Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei, 28: 65-71. Assa F., Jafarizadeh-Malmiri H., Ajamein H., Anarjan N., Vaghari H., Sayyar Z., and Berenjian A. (2016). A biotechnological perspective on the application of iron oxide nanoparticles. Nano Research, 9: 2203-2225. Awwad A. M., and Salem N. M. (2012). A green and facile approach for synthesis of magnetite nanoparticles. Nanoscience and Nanotechnology, 2: 208-213. Borovaya M. N., Naumenko A. P., Matvieieva N. A., Blume Y. B., and Yemets A. I. (2014). Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Research Letters, 9: 686. Chaudhuri K. N., Ghosh B., Tepfer D., and Jha S. (2005). Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Reports, 24: 25-35. Elfick A., Rischitor G., Mouras R., Azfer A., Lungaro L., Uhlarz M., Herrmannsdörfer T., Lucocq J., Gamal W., Bagnaninchi P., and Semple S. (2017). Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6. Scientific Reports, 7: 1-8. Fatima H., and Kim K. S. (2018). Iron-based magnetic nanoparticles for magnetic resonance imaging. Advanced Powder Technology, 29: 2678-2685. Fraga B. M., González-Coloma A., Alegre-Gómez S., López-Rodríguez M., Amador L. J., and Díaz C. E. (2017). Bioactive constituents from transformed root cultures of Nepeta teydea. Phytochemistry, 133: 59-68. Gautam S. S., Kumar S., Painuly D., and Mohan M. (2016). Volatile Constituents of Nepeta ciliaris Benth. roots from Kumaun Himalayas. National Academy Science Letters, 39: 465-467. Gawande M. B., Rathi A. K., Nogueira I. D., Varma R. S., and Branco P. S. (2013). Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chemistry, 15: 1895-1899. Gopalakrishnan V., and Muniraj S. (2021). Neem flower extract assisted green synthesis of copper nanoparticles – Optimisation, characterisation and anti-bacterial study. Materials Today: Proceedings, 36(4): 832-836. Hosseini V., Mirrahimi M., Shakeri-Zadeh A., Koosha F., Ghalandari B., Maleki S., Komeili A., and Kamrava S. K. (2018). Multimodal cancer cell therapy using Au@ Fe2O3 core–shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagnosis and Photodynamic Therapy, 24: 129-135. Hung L.-Y., Chang J.-C., Tsai Y.-C., Huang C.-C., Chang C.-P., Yeh C.-S., and Lee G.-B. (2014). Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system. Nanomedicine: Nanotechnology, Biology and Medicine, 10: 819-829. Iacob M., Cazacu M., Turta C., Doroftei F., Botko M., Čižmár E., Zeleňáková A., and Feher A. (2015). Amorphous iron–chromium oxide nanoparticles with long-term stability. Materials Research Bulletin, 65: 163-168. Jain A., Koyani R., Muñoz C., Sengar P., Contreras O. E., Juárez P., and Hirata G. A. (2018). Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. Journal of Colloid and Interface Science, 526: 220-229. Kazemi M., Dadkhah A., Abdolhoseini S., Javidfar F., and Barzkar A. (2016). Essential Oil Constituents of Three Nepeta Species from Iran: Nepeta monocephala, N. prostrata, and N. stenantha. Chemistry of Natural Compounds, 6: 1102-1103. Keshavarzi M., Davoodi D., Pourseyedi S., and Taghizadeh S. (2018). The effects of three types of alfalfa plants (Medicago sativa) on the biosynthesis of gold nanoparticles: an insight into phytomining. Gold Bulletin, 51: 99-110. Khalil M. M. H., Ismail E. H., El-Baghdady K. Z., and Mohamed D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7: 1131-1139. Khatami M., Pourseyedi S., Khatami M., Hamidi H., Zaeifi M., and Soltani L. (2015). Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresources and Bioprocessing, 2: 19. Lemine O., Omri K., Zhang B., El Mir L., Sajieddine M., Alyamani A., and Bououdina M. (2012). Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices and Microstructures, 52: 793-799. Liu X.-D., Chen H., Liu S.-S., Ye L.-Q., and Li Y.-P. (2015). Hydrothermal synthesis of superparamagnetic Fe3O4 nanoparticles with ionic liquids as stabilizer. Materials Research Bulletin, 62: 217-221. Mohammadi S., Pourseyedi S., and Amini A. (2016). Green synthesis of silver nanoparticles with a long lasting stability using colloidal solution of cowpea seeds (Vigna sp. L). Journal of Environmental Chemical Engineering, 4: 2023-2032. Mulvaney P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12: 788-800. Murashige T., and Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. Nnadozie, E. C., and Ajibade, P. A. (2020). Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Materials Letters, 263: 127145. Omidvari A., Manteghi F., Sohrabi B., and Afra Y. (2014). A herbal extract for the synthesis of magnetite nanoparticles. The 18th International Electronic Conference on Synthetic Organic Chemistry. DOI: 10.3390/ecsoc-18-b032. Ono N. N., and Tian L. (2011). The multiplicity of hairy root cultures: prolific possibilities. Plant Science, 180: 439-446. Oroujeni M., Kaboudin B., Xia W., Jönsson P., and Ossipov D. A. (2018). Conjugation of cyclodextrin to magnetic Fe 3 O 4 nanoparticles via polydopamine coating for drug delivery. Progress in Organic Coatings, 114: 154-161. Parizi K. J., Rahpeyma S. A., and Pourseyedi S. (2020). The novel paclitaxel-producing system: establishment of Corylus avellana L. hairy root culture. In Vitro Cellular & Developmental Biology-Plant, 56: 290-297. DOI: 10.1007/s11627-019-10050-2. Pascal C., Pascal J. L., Favier F., Elidrissi Moubtassim M. L., and Payen C. (1999). Electrochemical Synthesis for the Control of γ-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior. Chemistry of Materials, 11: 141-147. Pavia D. L., Lampman G. M., Kriz G. S., and Vyvyan J. A. (2014). Introduction to spectroscopy. Cengage Learning. Phu N. D., Sy T. X., Cao H. T., Dinh N. N., Thien L. V., Hieu N. M., Nam N. H., and Hai N. H. (2012). Amorphous iron-chromium oxide nanoparticles prepared by sonochemistry. Journal of Non-Crystalline Solids, 358: 537-543. Pinkas J., Reichlova V., Zboril R., Moravec Z., Bezdicka P., and Matejkova J. (2008). Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrasonics Sonochemistry, 15: 257-264. Pourakbar L., Siavash Moghaddam S., and Popović-Djordjević J. (2020). Synthesis of Metal/Metal Oxide Nanoparticles by Green Methods and Their Applications, in: Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q. (Eds.), Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development. Springer International Publishing, Cham, 63-81. Revia R. A., and Zhang M. (2016). Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Materials Today, 19: 157-168. Salehi B., Valussi M., Jugran A. K., Martorell M., Ramírez-Alarcón K., Stojanović-Radić Z. Z., Antolak H., Kręgiel D., Mileski K. S., and Sharifi-Rad M. (2018). Nepeta species: From farm to food applications and phytotherapy. Trends in Food Science & Technology, 80: 104-122. Sari I., and Yulizar Y. (2017). Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract. IOP Conference Series: Materials Science and Engineering, 191(1): pp. 012014. DOI: 10.1088/1757-899X/191/1/012014. Sathishkumar G., Logeshwaran V., Sarathbabu S., Jha P. K., Jeyaraj M., Rajkuberan C., Senthilkumar N., and Sivaramakrishnan S. (2018). Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artificial Cells, Nanomedicine, and Biotechnology, 46: 589-598. Sharma A., and Cannoo D. S. (2016). Comparative evaluation of extraction solvents/techniques for antioxidant potential and phytochemical composition from roots of Nepeta leucophylla and quantification of polyphenolic constituents by RP-HPLC-DAD. Journal of Food Measurement and Characterization, 10: 658-669. Simonsen G., Strand M., and Øye G. (2018). Potential applications of magnetic nanoparticles within separation in the petroleum industry. Journal of Petroleum Science and Engineering, 165: 488-495. Song D., Yang R., Long F., and Zhu A. (2019). Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. Journal of Environmental Sciences, 80: 14-34. Sorescu M., Diamandescu L., Tarabasanu-Mihaila D., Krupa S., and Feder M. (2010). Iron and chromium mixed-oxide nanocomposites. Hyperfine Interactions, 196: 359-368. Tietze R., Zaloga J., Unterweger H., Lyer S., Friedrich R. P., Janko C., Pöttler M., Dürr S., and Alexiou C. (2015). Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 468: 463-470. Valimehr S., Sanjarian F., Sharafi A., and Sabouni F. (2014). A reliable and efficient protocol for inducing genetically transformed roots in medicinal plant Nepeta pogonosperma. Physiology and Molecular Biology of Plants, 20: 351-356. Venkateswarlu S., and Yoon M. (2015). Surfactant-free green synthesis of Fe3O4 nanoparticles capped with 3, 4-dihydroxyphenethylcarbamodithioate: stable recyclable magnetic nanoparticles for the rapid and efficient removal of Hg (II) ions from water. Dalton Transactions, 44: 18427-18437. Wu S., Sun A., Zhai F., Wang J., Xu W., Zhang Q., and Volinsky A. A. (2011). Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Materials Letters, 65: 1882-1884. Yew Y. P., Shameli K., Miyake M., Kuwano N., Khairudin N. B. B. A., Mohamad S. E. B., and Lee K. X. (2016). Green synthesis of magnetite (Fe 3 O 4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Research Letters, 11: 276. Zare E., Pourseyedi S., Khatami M., and Darezereshki E. (2017). Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. Journal of Molecular Structure, 1146: 96-103. Zhu S., Guo J., Dong J., Cui Z., Lu T., Zhu C., Zhang D., and Ma J. (2013). Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrasonics Sonochemistry, 20: 872-880. | ||
آمار تعداد مشاهده مقاله: 304 تعداد دریافت فایل اصل مقاله: 230 |