- Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., and Peirce, J. W. (2005). “The historical development of the magnetic method in exploration”. Geophysics, 70(6): 33-61.
- Abdelrahman, E. M., Soliman, K. S., El-Araby, T. M., Abo-Ezz, E. R., and Essa, K. S. (2009). “A least-squares standard deviation method to interpret magnetic anomalies due to thin dikes”. Near Surface Geophysics, 7: 41-46.
- Ekinci, Y. L., Balkaya, C. S., Eren, A., Kaya, M. A., and Lightfoot, C. S. (2014). “Geomagnetic and geoelectrical prospection for buried archaeological remains on the Upper City of Amorium, a Byzantine City in Midwestern Turkey”. Journal of Geophysics and Engineering, 11: 015012.
- Abubakar, R., Muxworthy, A. R., Sephton, M. A., Southern, P., Watson, J. S., and Fraser, A. J. (2015). “Formation of magnetic minerals at hydrocarbon-generation conditions”. Marine and Petroleum Geology, 68: 509-519.
- Ivakhnenkoa, O. P., Abirova, R., and Logvinenkoc, A. (2015). “New method for characterisation of petroleum reservoir fluid mineral deposits using magnetic analysis”. Energy Procedia, 76: 454-462.
- Farquharson, C. G., and Craven, J. A. (2009). “Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada”. Journal of Applied Geophysics, 68: 450-458.
- Abedi, M., Gholami, A., and Norouzi, G. H. (2013). “A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran”. Computers and Geosciences, 52: 269-280.
- Abdelrahman, E. M., Essa, K. S., El-Araby, T., and Abo-Ezz, E. R. (2016). “Depth and shape solutions from second moving average residual magnetic anomalies”. Exploration Geophysics, 47: 58-66.
- Eshaghzadeh, A., and Sahebari, S. S. (2020). “Multivariable teaching-learning-based optimization (MTLBO) algorithm for estimating the structural parameters of the buried mass by magnetic data”. Geofizika, 37(2): 213-235.
- Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2020). “Determination of sheet-like geological structures parameters using Marquardt inversion of the magnetic data”. Indian Journal of Geo-Marine Sciences, 49: 450-457.
- Bektas, O¨., Ravat, D., Bu¨yu¨ksarac¸, A., Bilim, F., and Ates¸, A. (2007). “Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data”. Pure and Applied Geophysics, 164: 976-986.
- Nyabeze, P. K., and Gwavava, O. (2016). “Investigating heat and magnetic source depths in the Soutpansberg Basin, South Africa: Exploring the Soutpansberg Basin Geothermal Field”. Geothermal Energy, 4(8): 1-22.
- Gu¨ndog˘du, N. Y., Candansayar, M. E., and Genc¸, E. (2017). “Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods”. Journal of Environmental & Engineering Geophysics (JEEG), 22(2): 177-189.
- Al-Garni, M. A. (2011). “Magnetic and DC resistivity investigation for groundwater in a complex subsurface terrain”. Arabian Journal of Geosciences, 4: 385-400.
- Araffa, S. A. S., Helaly, A. S., Khozium, A., Lala, A. M. S., Soliman, S. A., and Hassan, N. M. (2015). “Delineating groundwater and subsurface structures by using 2D resistivity, gravity and 3D magnetic data interpretation around Cairo-Belbies Desert road, Egypt”. NRIAG Journal of Astronomy and Geophysics, 4: 134-146.
- Boschetti, F., Denith, M. C., and List, R. D. (1997). “Inversion of potential field data by genetic algorithms”. Geophysical Prospecting, 45: 461-478.
- Kaftan, I. (2017). “Interpretation of magnetic anomalies using a genetic algorithm”. Acta Geophysica, 65: 627-634.
- van den Bergh, F., and Engelbrecht, A. P. (2004). “A Cooperative approach to particle swarm optimization”. IEEE Transactions on Evolutionary Computation, 8: 225-239.
- Essa, K. S., and Elhussein, M. (2017b). “2D dipping dike magnetic data interpretation using a robust particle swarm optimization”. Geoscientific Instrumentation, Methods and Data Systems, Discuss.
- Eshaghzadeh, A., and Sahebari, S. S. (2020). “Application of PSO Algorithm based on the mean value of maximum frequency distribution for 2-D inverse modeling of gravity data due to a finite vertical cylinder shape”. Quaderni di Geofisica, 162: 1-22.
- Eshaghzadeh, A., and Hajian, A. (2021). “2-D gravity inverse modelling of anticlinal structure using improved particle swarm optimization (IPSO)”. Arabian Journal of Geosciences, 14: 1378.
- Fathi, M., Alimoradi, A., and Hemati, H. (2021). “Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade”. Journal of Mining and Environment (JME), 2: 397-411
- Ekinci, Y. L., Balkaya, C¸., Go¨ktu¨rkler, G., and Turan, S. (2016). “Model parameter estimations from residual gravity anomalies due to simple-shaped sources using differential evolution algorithm”. Journal of Applied Geophysics, 129: 133-147.
- Balkaya, C., Ekinci, Y. L., Go¨ktu¨rkler, G., and Turan, S. (2017). “3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm”. Journal of Applied Geophysics, 136: 372-386.
- Biswas, A. (2015). “Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization”. Geoscience Frontiers, 6: 875-893.
- Al-Garni, M. A. (2013). “Inversion of residual gravity anomalies using neural network”. Arabian Journal of Geosciences, 6: 1509-1516.
- Eshaghzadeh, A., and Hajian, A. (2018). “2D inverse modeling of residual gravity anomalies from Simple geometric shapes using Modular Feed-forward Neural Network”. Annals of Geophysics, 61: SE115.
- Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2021). “2-D Anticlinal Structure Modeling Using Feed-Forward Neural Network (FNN) Inversion of Profile Gravity Data: A Case Study from Iran”. Journal of the Earth and Space Physics, 46: 79-91.
- Colorni, A., Dorigo, M., and Maniezzo, V. (1991). “Distributed optimization by ant colonies”. In Proceedings of the 1st European Conference on Artificial Life, 134-142.
- Srivastava, S., Datta, D., Agarwal, B. N. P., and Mehta, S. (2014). “Applications of ant colony optimization in determination of source parameters from total gradient of potential fields”. Near Surface Geophysics, 12: 373-389.
- Bresco, M., Raiconi, G., Barone, F., DeRosa, R., and Milano, L. (2005). “Genetic approach helps to speed classical Price algorithm for global optimization”. Soft Computing, 9: 525-535.
- Di Maio, R., Rani, P., Piegari, E., and Milano, L. (2016). “Selfpotential data inversion through a genetic-price algorithm”. Computers and Geosciences, 94: 86-95.
- Eshaghzadeh, A., and Hajian, A. (2020). “Multivariable Modified Teaching Learning Based Optimization (MM-TLBO) Algorithm for Inverse Modeling of Residual Gravity Anomaly Generated by Simple Geometric Shapes”. Journal of Environmental & Engineering Geophysics, 25(4): 463-476.
- Ku, C. C., and Sharp, J. A. (1983). “Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modeling”. Geophysics, 48: 754-774.
- Thompson, D. T. (1982). “EULDPH—A new technique for making computer-assisted depth estimates from magnetic data”. Geophysics, 47: 31-37.
- Abdelrahman, E. M., Abo-ezz, E. R., and Essa, K. S. (2012). “Parametric inversion of residual magnetic anomalies due to simple geometric bodies”. Exploration Geophysics, 43: 178-189.
- Pilkington, M., and Keating, P. (2006). “The relationship between local wavenumber and analytic signal in magnetic interpretation”. Geophysics, 71: L1-L3.
- Abdelrahman, E. M., El-Araby, H. M., El-Araby, T. M., and Essa, K. S. (2003). “A least-squares minimization approach to depth determination from magnetic data”. Pure and Applied Geophysics, 160: 1259-1271.
- Essa, K. S., and Elhussein, M. (2017a). “A new approach for the interpretation of magnetic data by a 2-D dipping dike”. Journal of Applied Geophysics, 136: 431-443.
- Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2019). “Inverse modeling of gravity field data due to finite vertical cylinder using modular neural network and least-squares standard deviation method”. Iranian Journal of Earth Sciences, 11(4): 267-276.
- Tlas, M., and Asfahani, J. (2011). “Fair function minimization for interpretation of magnetic anomalies due to thin dikes, sphere sand faults”. Journal of Applied Geophysics, 75: 237-243.
- Fedi, M. (2007). “DEXP: A fast method to determine the depth and the structural index of potential fields sources”. Geophysics, 72: I1-I11.
- Abdelrahman, E. M., Abo-Ezz, E. R., Essa, K. S., El-Araby, T. M., and Soliman, K. S. (2007). “A new least-squares minimization approach to depth and shape determination from magnetic data”. Geophysical Prospecting, 55: 433-446.
- Abo-Ezz, E. R., and Essa, K. S. (2016). “A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula”. Pure and Applied Geophysics, 173: 1265-1278.
- Eshaghzadeh, A., Dehghanpour, A., and Sahebari, S. S. (2019). “Marquardt inverse modeling of the residual gravity anomalies due to simple geometric structures: A case study of chromite deposit”. Contributions to Geophysics and Geodesy, 49(2): 153-180.
- Tlas, M., and Asfahani, J. (2015). “The simplex algorithm for best estimate of magnetic parameters related to simple geometric shaped structures”. Mathematical Geosciences, 47: 301-316.
- Eshaghzadeh, A., Sahebari, S. S., and Kalantari, R. A. (2020). “Determination of sheet-like geological structures parameters using Marquardt inversion of the magnetic data”. Indian Journal of Geo-Marine Sciences, 49: 450-457.
- Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization”. IEEE International Conference on Neural Networks, 4: 1942-1948.
- Monteiro Santos, F. A. (2010). “Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization”. Computers & Geosciences, 36: 1185-1190.
- Toushmalani, R. (2013a). “Comparison result of inversion of gravity data of a fault by particle swarm optimization and Levenberg–Marquardt methods”. SpringerPlus, 2: 462.
- Toushmalani, R. (2013b). “Gravity inversion of a fault by Particle Swarm Optimization (PSO)”. SpringerPlus, 2: 315.
- Pallero, J. L. G., Fernández-Martínez, J. L., Bonvalot, S., and Fudym, O. (2015). “Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization”. Journal of Applied Geophysics, 116: 180-191.
- Singh, A., and Biswas, A. (2016). “Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries”. Natural Resources Research, 25: 297-314.
- Singh, K. K., and Singh, U. K. (2017). “Application of particle swarm optimization for gravity inversion of 2.5-D sedimentary basins using variable density contrast”. Geoscientific Instrumentation, Methods and Data Systems, 6: 193-198.
- Roshan, R., and Singh, U. K. (2017). “Inversion of residual gravity anomalies using tuned PSO”. Geoscientific Instrumentation, Methods and Data Systems, 6: 71-79.
- Essa, K. S., and Elhussein, M. (2018). “Gravity Data Interpretation Using Different New Algorithms: A Comparative Study. Gravity-Geoscience Applications, Industrial Technology and Quantum Aspect”. Licensee InTech. DOI: 10.5772/intechopen.71086.
- Essa, K. S., and Elhussein, M. (2018). “PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures”. Pure and Applied Geophysics, 175: 3539-3553.
- Sweilam, N. H., El-Metwally, K., and Abdelazeem, M. (2007). “Selfpotential signal inversion to simple polarized bodies using the particle swarm optimization method: A visibility study”. Journal of Applied Geophysics, 6: 195-208.
- Abdelrahman, E. M., Bayoumi, A. I., Abdelhady, Y. E., Gobash, M. M., and EL-Araby, H. M. (1989). “Gravity interpretation using correlation factors between successive leastsquares residual anomalies”. Geophysics, 54: 1614-1621.
- Blakely, R. J. (1995). “Potential Theory in Gravity and Magnetic Applications”. Cambridge University Press.
|