تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,967 |
تعداد دریافت فایل اصل مقاله | 2,845,056 |
سناریوهای محتمل بر آینده تجهیزات پزشکی در ایران با تاکید بر فناوریهای نوین اطلاعاتی و تأثیرات کرونا ویروس | ||
آینده پژوهی ایران | ||
مقاله 9، دوره 7، شماره 2 - شماره پیاپی 13، دی 1401، صفحه 203-234 اصل مقاله (1.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/jfs.2022.15507.1288 | ||
نویسندگان | ||
بابک محمدحسینی* 1؛ مرتضی هادی زاده2؛ یلدا ساکی3 | ||
1استادیار، دانشگاه بین المللی امام خمینی(ره،) قزوین، ایران | ||
2دانشآموخته کارشناسیارشد مدیریتکارآفرینی سازمانی،دانشگاه شهید بهشتی تهران،ایران(نویسنده مسئول) | ||
3کارشناسی مهندسی پزشکی، دانشگاه بین المللی امام خمینی، مرکز فنی و مهندسی بوئین زهرا | ||
تاریخ دریافت: 18 اردیبهشت 1400، تاریخ بازنگری: 02 مرداد 1400، تاریخ پذیرش: 29 شهریور 1401 | ||
چکیده | ||
هدف: پیشرفت در فناوری اطلاعات و قدرت محاسبات غیرمتمرکز در بسیاری از کشورهای جهان، امید بهرهمندی از فناوریهای نوین اطلاعاتی ازجمله هوش مصنوعی را جهت رفع چالشهای منحصر به فرد در زمینه بهداشت جهانی از جمله بحران ناشی از کرونا ایجاد کرده است. در پژوهش حاضر به بررسی سناریوهای محتمل آینده در صنعت، به منظور کشف فرصتهای جدید جهت افزایش سطح سلامت و افزایش سطح کیفی زندگی میپردازیم. روش: جنس پژوهش حاضر از نوع اکتشافی است و روش مورد استفاده، آمیخته ترتیبی میباشد که در دو بخش کمی و کیفی انجام شده است. بخش کمی به روش معادلات ساختاری میپردازد و بخش کیفی دربردارنده روشهای دلفی، ماتریس متقاطع و سناریونگاری است. یافتهها: با درنظر گرفتن ادبیات پژوهش، هفده پیشران در سه بعد موثر بر پژوهش، شناسایی شد که در روش دلفی صحت عوامل تایید، رتبهبندی و میزان قطعیت آنها محاسبه شد. روابط پیشرانها و ابعاد شناسایی شده در قالب فرضیه و ارائه مدل به روش معادلات ساختاری سنجش و تایید شد، با استفاده از روش ماتریس متقاطع نیز پنج پیشران به عنوان ریسک و هدف شناساسایی شد، درنهایت با اجماع عدمقطعیت و پیشرانهای ریسک و هدف، چهار سناریو تدوین گردید. نتیجهگیری: ساختار درمان و تجیهزات پزشکی با تاثیرپذیری از شرایط کرونایی و توجه به سرعت رشد، استفاده بهینه و هوشمند از فناوریهای نوین دیجیتال، پدیدارندهی تحول گسترده در این حوزه است و امکان نیل به آیندهی مطلوب را با بهرهمندی از سناریو شکلگیری جامعه بههمپیوستهجهانی وتحقق بهداشت جهانی در تعامل پیشرانهای هوشمصنوعی، نیازهای جدیدتولید، تحریم، اینترنتاشیا و بلاکچین، تصویر میسازد. | ||
کلیدواژهها | ||
واژگان کلیدی: آینده پژوهی؛ تجهیزات پزشکی؛ فناوری اطلاعات؛ کوید-19 | ||
عنوان مقاله [English] | ||
Possible Scenarios for the Future of Medical Devices in Iran with an Emphasis on Modern Information Technologies and the Effects of Coronavirus | ||
نویسندگان [English] | ||
babak mohammadhosseini1؛ morteza hadizadeh2؛ Yalda Saki3 | ||
1Assistant Professor, Imam Khomeini International University, Qazvin, Iran. | ||
2M.A. in Organizational Entrepreneurship Management, Shahid Beheshti Universit,Tehran, Iran | ||
3Bachelor of Medical Engineering, Imam Khomeini International University, Buin Zahra Technical and Engineering Center | ||
چکیده [English] | ||
Objective: In many countries, the advancements in information technologies and the decentralized computing method has inspired hope to take advantage of modern information technologies, such as artificial intelligence, in order to overcome the unique challenges in global health including the coronavirus crisis. The following study tries to examine the possible future scenarios in the industry, with the aim of discovering new opportunities to increase health and quality of life. Findings: Considering the research literature, seventeen drivers, which had affected the research in three dimensions, were identified and the Delphi method was used for the accuracy of confirmation, their rankings and for the calculation of their certainty. The relationships between the drivers and the identified dimensions were measured and confirmed in the form of hypotheses and model presentations by structural equation methods. Using the cross-matrix method, five drivers were identified as risk and goal. Finally, through the identification of uncertainty and risk and goal drivers, four scenarios were developed. Conclusion: Conclusion: The treatment structure and medical equipment influenced by COVID-19 pandemic conditions and due to the growth rate, optimal and intelligent application of modern digital technologies creates a wide-ranging evolution in this field and illustrates the possibility of achieving a desired future by taking advantage of the scenario of the formation of an interconnected global society and the realization of global health in the interaction of artificial intelligence drivers, novel production demands, sanctions, internet of things (IoT) and blockchain. | ||
کلیدواژهها [English] | ||
Futures Studies, Medical Equipment, Information Technology, Covid-19 | ||
مراجع | ||
اداره کل تجهیزات پزشکی، (1399)، معرفی صادرکنندگان، 1399/1/14 در شده بازدید ،
بازرگان هرندی، (1389)، ارزشیابی آموزشی مفاهیم، الگوها و فرآیند عملیاتی، تهران: سمت.
ذاکری، صارمی و محمدصادق. (1399). تعیین پیکرهبندی دانش در فرایند بینالمللی شدن شرکتهای دانشبنیان ایران، مطالعه موردی تجهیزات پزشکی. نشریه علمی پژوهشی مدیریت کسب و کارهای بین المللی,3(3): 89-113.
رنجبرحیدری، وحید؛ قربانی، ارسلان؛ سیمبر و حاجیانی.(1396)، شناسایی و تبیین عوامل و پیشرانهای مؤثر بر روابط ایران و شورای همکاری خلیج فارس در افق ده ساله با بهرهگیری از روش میک مک. آیندهپژوهی دفاعی، 1(2): 7-37.
نجفی اصل، (1393). بهرهگیری از روش تحقیق آمیخته در پروژههای توسعه روستایی (توریسم روستایی). توسعه محلی (روستائی-شهری)، 6(1): 147-166.
References
Ahmad, A. R., & Murad, H. R. (2020). The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: online questionnaire study. Journal of medical Internet research, 22(5), e19556.
Ahmad, I., & Pothuganti, K. (2020). Analysis of different convolution neural network models to diagnose Alzheimer’s disease. Materials Today: Proceedings.
Albahri, A. S., Alwan, J. K., Taha, Z. K., Ismail, S. F., Hamid, R. A., Zaidan, A. A., ... & Alsalem, M. A. (2021). IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art. Journal of Network and Computer Applications, 173, 102873.
Al-Mawali, A., Pinto, A. D., & Al-Hinai, A. T. (2018). Medical equipment and healthcare technology: Health Vision 2050. Biomedical instrumentation & technology, 52(6), 442-450.
Alotaibi, Y. K., & Federico, F. (2017). The impact of health information technology on patient safety. Saudi medical journal, 38(12), 1173.
Alvarez-Risco, A., Mejia, C. R., Delgado-Zegarra, J., Del-Aguila-Arcentales, S., Arce-Esquivel, A. A., Valladares-Garrido, M. J., ... & Yáñez, J. A. (2020). The Peru approach against the COVID-19 infodemic: insights and strategies. The American journal of tropical medicine and hygiene, 103(2), 583-586.
Andersen, P. D., & Rasmussen, B. (2014). Introduction to foresight and foresight processes in practice. Course material for Foresight for Engineers. Lyngby Denmark: DTU. (June).
Ao, C., Jin, S., Ding, H., Zou, Q., & Yu, L. (2020). Application and Development of Artificial Intelligence and Intelligent Disease Diagnosis. Current pharmaceutical design, 26(26), 3069-3075.
Armani, A. M., Hurt, D. E., Hwang, D., McCarthy, M. C., & Scholtz, A. (2020). Low-tech solutions for the COVID-19 supply chain crisis. Nature Reviews Materials, 5(6), 403-406.
Bazargan Herandi, (2009), educational evaluation of concepts, patterns and operational process, Tehran: Samt. (In Persian)
Bennett, E. M., Solan, M., Biggs, R., McPhearson, T., Norström, A. V., Olsson, P. Carpenter, S. R. (2016). Bright spots: seeds of a good anthropocene. Frontiers in Ecology and the Environment, 14(8), 441–448.
Berkhout, F., Hertin, J., & Jordan, A. (2002). Socio-economic futures in climate change impact assessment: using scenarios as ‘learning machines’. Global Environmental Change, 12(2), 83-95.
Bood, R. P., & Postma, T. J. B. M. (1998). Scenario analysis as a strategic management tool. Graduate School/Research Institute Systems, Organisation and Management.
Börjeson, L., Höjer, M., Dreborg, K. H., Ekvall, T., & Finnveden, G. (2006). Scenario types and techniques: towards a user's guide. Futures, 38(7), 723-739.
Bronzino, Joseph. 2005. Introduction to Biomedical Engineering Biomedical Engineering: A Historical Perspective. Second Edi. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-238662-6.50003-3.
Chamola, V., Hassija, V., Gupta, V., & Guizani, M. (2020). A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact. Ieee access, 8, 90225-90265.
Chinzei, K., Shimizu, A., Mori, K., Harada, K., Takeda, H., Hashizume, M., ... & Mitsuishi, M. (2018). Regulatory science on AI-based medical devices and systems. Advanced Biomedical Engineering, 7, 118-123.
Dalkey, N. C. (1972). The Delphi method: An experimental study of group opinion. In N. C. Dalkey, D. L. Rourke, R. Lewis, & D. Snyder (Eds.). Studies in the quality of life: Delphi and decision-making (pp. 13-54).
Dana, L. P., Salamzadeh, A., Hadizadeh, M., Heydari, G., & Shamsoddin, S. (2022). Urban entrepreneurship and sustainable businesses in smart cities: Exploring the role of digital technologies. Sustainable Technology and Entrepreneurship, 1(2), 100016.
Dana, L. P., Salamzadeh, A., Mortazavi, S., & Hadizadeh, M. (2022). Investigating the impact of international markets and new digital technologies on business innovation in emerging markets. Sustainability, 14(2), 983.
Dana, L. P., Salamzadeh, A., Mortazavi, S., Hadizadeh, M., & Zolfaghari, M. (2022). Strategic futures studies and entrepreneurial resiliency: a focus on digital technology trends and emerging markets. Tec Empresarial, 16(1), 87-100.
Delbecq, A. L., Van de Ven, A. H., & Gustafson, D. H. (1975). Group techniques for program planning. Glenview, IL: Scott, Foresman, and Co.
Dubey, R., & Ali, S. (2014). Identification of flexible manufacturing system dimensions and their interrelationship using total interpretive structural modelling and fuzzy MICMAC analysis. Global Journal of Flexible Systems Management, 15 (2), 131–143.
Duncan, R. B. (1972). Characteristics of organizational environments and perceived environmental uncertainty. Administrative science quarterly, 313-327.
Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC medical informatics and decision making, 20(1), 1-19.
Garzotto, F., Ceresola, E., Panagiotakopoulou, S., Spina, G., Menotto, F., Benozzi, M., ... & Opocher, G. (2020). COVID-19: ensuring our medical equipment can meet the challenge. Expert Review of Medical Devices, 17(6), 483-489.
General Department of Medical Equipment, (2019), introduction of exporters, visited on 1/14/2019. http://imed.ir/Default.aspx?PageName=Export
Gordon, Theodore; Rochberg, Richard; Enzer, Selwyn, (2008)."Research on Cross Impact Techniques with Selected Problems in Economics, Political Science and Technology Assessment," Institute for the Future
Gu, M., Yang, L., & Huo, B. (2021). The impact of information technology usage on supply chain resilience and performance: An ambidexterous view. International Journal of Production Economics, 232, 107956.
Han, C., Rundo, L., Murao, K., Nemoto, T., & Nakayama, H. (2020, June). Bridging the gap between AI and healthcare sides: towards developing clinically relevant AI-powered diagnosis systems. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 320-333). Springer, Cham.
Han, C., Rundo, L., Murao, K., Nemoto, T., & Nakayama, H. (2020, June). Bridging the gap between AI and healthcare sides: towards developing clinically relevant AI-powered diagnosis systems. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 320-333). Springer, Cham.
Haq, M. I. U., Khuroo, S., Raina, A., Khajuria, S., Javaid, M., Haq, M. F. U., & Haleem, A. (2020). 3D printing for development of medical equipment amidst coronavirus (COVID-19) pandemic—review and advancements. Research on Biomedical Engineering, 1-11.
Heinonen, S., Kuusi, O., & Salminen, H. (Eds.). (2017). How Do We Explore Our Futures?: Methods of Futures Research. Finnish Society for Futures Study.
Ismail, A., & Kumar, N. (2021, May). AI in Global Health: The View from the Front Lines. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-21).
Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. International Journal of Production Research, 58(10), 2904-2915.
Johnstone, S. (2020). A viral warning for change. covid-19 versus the red cross: Better solutions via blockchain and artificial intelligence. COVID-19 Versus the Red Cross: Better Solutions Via Blockchain and Artificial Intelligence (February 3, 2020). University of Hong Kong Faculty of Law Research Paper, (2020/005).
Kahn, H., & Wiener, A. J. (1967). year 2000; a framework for speculation on the next thirty-three years.
Kajikawa, Y., Ohno, J., Takeda, Y., Matsushima, K., & Komiyama, H. (2007). Creating an academic landscape of sustainability science: an analysis of the citation network. Sustainability Science, 2(2), 221
Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I., ... & Svedin, U. (2001). Sustainability science. Science, 292(5517), 641-642.
Kaushik, A. K., Dhau, J. S., Gohel, H., Mishra, Y. K., Kateb, B., Kim, N. Y., & Goswami, D. Y. (2020). Electrochemical SARS-CoV-2 sensing at point-of-care and artificial intelligence for intelligent COVID-19 management. ACS Applied Bio Materials, 3(11), 7306-7325.
Kishita, Y., Hara, K., Uwasu, M., & Umeda, Y. (2016). Research needs and challenges faced in supporting scenario design in sustainability science: a literature review. Sustainability Science, 11(2), 331-347.
Kishita, Y., Ohishi, Y., Uwasu, M., Kuroda, M., Takeda, H., & Hara, K. (2016). Evaluating the life cycle CO2 emissions and costs of thermoelectric generators for passenger automobiles: a scenario analysis. Journal of Cleaner Production, 126, 607-619.
Kumar, S., Raut, R. D., & Narkhede, B. E. (2020). A proposed collaborative framework by using artificial intelligence-internet of things (AI-IoT) in COVID-19 pandemic situation for healthcare workers. International Journal of Healthcare Management, 13(4), 337-345.
Kumazawa, T., Kozaki, K., Matsui, T., Saito, O., Ohta, M., Hara, K., ... & Mizoguchi, R. (2014). Initial design process of the sustainability science ontology for knowledge-sharing to support co-deliberation. Sustainability Science, 9(2), 173-192.
Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents, 55(3), 105924.
Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 110059.
Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., ... & Thomas, C. J. (2012). Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability science, 7(1), 25-43.
Ludwig, B. (1997). Predicting the future: Have you considered using the Delphi methodology? Journal of Extension, 35 (5), 1-4. Retrieved November 6, 2005 from http://www.joe.org/joe/1997october/tt2.html
Mheidly, N., & Fares, J. (2020). Leveraging media and health communication strategies to overcome the COVID-19 infodemic. Journal of public health policy, 1-11.
Mheidly, N., & Fares, J. (2020). Leveraging media and health communication strategies to overcome the COVID-19 infodemic. Journal of public health policy, 1-11.
Miller, L. E. (2006, October). Determining what could/should be: The Delphi technique and its application. Paper presented at the meeting of the 2006 annual meeting of the Mid-Western Educational Research Association, Columbus, Ohio.
Mirza, E., & Ehsan, N. (2017). Quantification of project execution complexity and its effect on performance of infrastructure development projects. Engineering Management Journal, 29(2), 108–123
Mohammadhosseini, B., Hadizadeh, M., & Ghafelebashi, S. F. (2021). The Drivers of Sustainable Cyber Service Offer in the Government with an Emphasis on Maintaining Security Using Artificial Intelligence. Journal of Iran Futures Studies, 5(2), 35-65. doi: 10.30479/jfs.2021.14002.1221
Mollenkopf, D. A., Ozanne, L. K., & Stolze, H. J. (2020). A transformative supply chain response to COVID-19. Journal of Service Management.
Nabelsi, V., & Gagnon, S. (2017). Information technology strategy for a patient-oriented, lean, and agile integration of hospital pharmacy and medical equipment supply chains. International Journal of Production Research, 55(14), 3929-3945.
Nabelsi, V., & Gagnon, S. (2017). Information technology strategy for a patient-oriented, lean, and agile integration of hospital pharmacy and medical equipment supply chains. International Journal of Production Research, 55(14), 3929-3945.
Najafi Asl, Z. (2014). Mixed Method Utilization in Rural Tourism Development Projects. Community Development (Rural and Urban Communities), 6(1), 147-166. doi: 10.22059/jrd.2014.52075. (In Persian)
Nguyen, D., Ding, M., Pathirana, P. N., & Seneviratne, A. (2020). Blockchain and AI-based solutions to combat coronavirus (COVID-19)-like epidemics: A survey.
Nguyen, D., Ding, M., Pathirana, P. N., & Seneviratne, A. (2020). Blockchain and AI-based solutions to combat coronavirus (COVID-19)-like epidemics: A survey.
Osipov, V. S., & Skryl, T. V. (2021). Impact of Digital Technologies on the Efficiency of Healthcare Delivery. In IoT in Healthcare and Ambient Assisted Living (pp. 243-261). Springer, Singapore.
Pecchia, L., N. Pallikarakis, R. Magjarevic, and E. Iadanza. 2019. “Health Technology Assessment and Biomedical Engineering: Global Trends, Gaps and Opportunities.” Medical Engineering and Physics 72: 19–26. https://doi.org/10.1016/j.medengphy.2019.08.008.
Pirouz, B., Shaffiee Haghshenas, S., Shaffiee Haghshenas, S., & Piro, P. (2020). Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis. Sustainability, 12(6), 2427.
PWC (2017). Report: 2017 Global Innovation 1000, available at https://www.digitalpulse.pwc.com.au/report-2017-global-innovation-1000/
RanjbarHeydari, V., Gorbani, A., Simbar, R., & Hajiani, E. (2016). Recognition and Explanation of Effective Factors and Propulsions on Iran and Persian Gulf Cooperation Council (PGCC) Relations in Next Ten Years Overlook by Utilizing MICMAC Method. Defensive Future Studies, 1(2), 7-37. (In Persian)
Rasheed, J., Jamil, A., Hameed, A. A., Aftab, U., Aftab, J., Shah, S. A., & Draheim, D. (2020). A survey on artificial intelligence approaches in supporting frontline workers and decision makers for COVID-19 pandemic. Chaos, Solitons & Fractals, 110337.
Robinson, C. J., Maclean, K., Hill, R., Bock, E., & Rist, P. (2016). Participatory mapping to negotiate indigenous knowledge used to assess environmental risk. Sustainability Science, 11(1), 115-126.
Salamzadeh, A., Dana, L. P., Mortazavi, S., & Hadizadeh, M. (2022). Exploring the Entrepreneurial Challenges of Disabled Entrepreneurs in a Developing Country. In Disadvantaged Minorities in Business (pp. 105-128). Cham: Springer International Publishing.
Salamzadeh, A., Hadizadeh, M., & Mortazavi, S. S. (2021). Realization of online entrepreneurship education based on new digital technologies in Iran: A scenario planning approach. Journal of Entrepreneurship Development, 14(3), 481-500. doi: 10.22059/jed.2021.319839.653617
Salamzadeh, A., Hadizadeh, M., & Mortazavi, S. S. (2022). Investigating the Relationship between Strategic Foresight and Media Technologies in Business Models. , 1(2), 171-194. doi: 10.22059/mmr.2022.89052
Salamzadeh, A., Hadizadeh, M., Rastgoo, N., Rahman, M. M., & Radfard, S. (2022). Sustainability-oriented innovation foresight in international new technology based firms. Sustainability, 14(20), 13501.
Salamzadeh, A., Mortazavi, S. S., & Hadizadeh, M. (2022). Social Media and Digital Technologies Among Pottery Makers and in the Sewing Sector. In Artisan and Handicraft Entrepreneurs: Past, Present, and Future (pp. 217-238). Cham: Springer International Publishing.
Saritas, O., & Nugroho, Y. (2012). Mapping issues and envisaging futures: An evolutionary scenario approach. Technological Forecasting and Social Change, 79(3), 509-529.
Sarkis, J. (2020). Supply chain sustainability: learning from the COVID-19 pandemic. International Journal of Operations & Production Management.
Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236), 1579-1586.
Schwartz, P. (2012). The art of the long view: planning for the future in an uncertain world. Currency.
Shamayleh, A., Awad, M., & Farhat, J. (2020). IoT based predictive maintenance management of medical equipment. Journal of medical systems, 44(4), 1-12.
Spaniol, M. J., & Rowland, N. J. (2019). Defining scenario. Futures & Foresight Science, 1(1), e3.
Sust, P. P., Solans, O., Fajardo, J. C., Peralta, M. M., Rodenas, P., Gabaldà, J., ... & Piera-Jimenez, J. (2020). Turning the crisis into an opportunity: digital health strategies deployed during the COVID-19 outbreak. JMIR public health and surveillance, 6(2), e19106.
Swart, R. J., Raskin, P., & Robinson, J. (2004). The problem of the future: sustainability science and scenario analysis. Global environmental change, 14(2), 137-146.
Tuzovic, S. and Kabadayi, S. (2020), “The influence of social distancing on employee wellbeing: a conceptual framework and research agenda”, Journal of Service Management, forthcoming, doi: 10.1108/JOSM-05-2020-0140.
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337-339.
Van der Heijden, K. (2011). Scenarios: the art of strategic conversation. John Wiley & Sons.
Van Notten, P. W., Rotmans, J., Van Asselt, M. B., & Rothman, D. S. (2003). An updated scenario typology. Futures, 35(5), 423-443.
Vatandsoost, M., & Litkouhi, S. (2019). The future of healthcare facilities: how technology and medical advances may shape hospitals of the future. Hospital Practices and Research, 4(1), 1-11.
Wang, L., & Alexander, C. A. (2020). Big data analytics in medical engineering and healthcare: methods, advances and challenges. Journal of medical engineering & technology, 44(6), 267-283.
Wiek, A., & Iwaniec, D. (2014). Quality criteria for visions and visioning in sustainability science. Sustainability Science, 9(4), 497-512.
Zakery, A., & Saremi, M. S. (2020). Determining the Knowledge Configuration in Internationalization Process of Iranian Technology-based-firms, Case Study in Medical Equipment. Journal of International Business Administration, 3(3), 89-113. (In Persian)
Zakery, A., Saremi, M. (2020). Determining the Knowledge Configuration in Internationalization Process of Iranian Technology-based-firms, Case Study in Medical Equipment. Journal of International Business Administration, 3(3), 89-113. doi: 10.22034/jiba.2020.11444
Zeng, Z., Chen, P. J., & Lew, A. A. (2020). From high-touch to high-tech: COVID-19 drives robotics adoption. Tourism Geographies, 22(3), 724-734.
Zhao, J., Han, H., Zhong, B., Xie, W., Chen, Y., & Zhi, M. (2021). Health information on social media helps mitigate Crohn's disease symptoms and improves patients' clinical course. Computers in Human Behavior, 115, 106588.
Zhao, Y., Cheng, S., Yu, X., & Xu, H. (2020). Chinese public's attention to the COVID-19 epidemic on social media: observational descriptive study. Journal of medical Internet research, 22(5), e18825 | ||
آمار تعداد مشاهده مقاله: 716 تعداد دریافت فایل اصل مقاله: 407 |