تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,618 |
تعداد دریافت فایل اصل مقاله | 2,844,897 |
Assessing the suitability of SCoT markers for studying genetic variation and genetic structure of Lepidium species | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 10، شماره 1 - شماره پیاپی 19، تیر 2021، صفحه 91-100 اصل مقاله (730.76 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2022.17340.1316 | ||
نویسندگان | ||
Niloufar Jelvehgar1؛ Seied Mehdi Miri* 2؛ Khodadad Mostafavi1؛ Abdollah Mohammadi1 | ||
1Department of Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran. | ||
2Department of Horticulture, Karaj Branch, Islamic Azad University, Karaj, Iran. | ||
تاریخ دریافت: 18 خرداد 1401، تاریخ بازنگری: 25 مهر 1401، تاریخ پذیرش: 26 مهر 1401 | ||
چکیده | ||
Lepidium spp. (Brassicaceae) are herbaceous plants grown worldwide and considered as vegetable, phytofood or medicinal plants. The genetic variation and genetic structure of 22 Lepidium (L.) accessions representing 3 species (L. sativum, L. draba and L. latifolium) from Iran were assessed using 14 Start Codon Targeted (SCoT) markers. A high polymorphism (98.4%), polymorphic information content (0.35) and polymorphic bands (4.5) indicated that SCoT markers are reliable for genetic variation analysis in Lepidium spp. Mean values of resolving power (Rp), marker index (MI) and effective multiplex ratio (EMR) were 5.0, 1.6 and 4.4, respectively. The highest percentage of polymorphic loci (92.2%), Nei’s gene diversity (0.35) and Shannon index (0.51) were observed in L. sativum. According to analysis of molecular variance (AMOVA), genetic variation within species was higher than between species. The highest similarity was found between L. draba and L. latifolium (r=0.94). A high level of gene flow was estimated in accessions of Lepidium species (Nm=2.65), which is further confirmed by neighbor-joining (NJ) cluster analysis, principal coordinates analysis (PCoA) and STRUCTURE analysis, that could reveal a poor separation between Lepidium species. NJ cluster analysis divided the Lepidium accessions into three groups, and the grouping of accessions was generally consistent with their origins. This study is the first to explore and prove SCoT markers suitability in genetic diversity of Lepidium spp. The genetic analysis information provided here would be helpful for breeding programs and germplasm conservation in Lepidium species. | ||
کلیدواژهها | ||
Accession؛ Brassicaceae؛ Cluster analysis؛ Genetic diversity؛ Molecular markers | ||
عنوان مقاله [English] | ||
ارزیابی مناسب بودن نشانگرهای SCoT برای تنوع ژنتیکی و ساختار ژنتیکی گونه های Lepidium | ||
نویسندگان [English] | ||
نیلوفر جلوه گر1؛ سید مهدی میری2؛ خداداد مصطفوی1؛ عبدالله محمدی1 | ||
1گروه اصلاح نباتات، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران. | ||
2گروه باغبانی، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران. | ||
چکیده [English] | ||
گونه .Lepidium spp (Brassicaceae) گیاهانی علفی هستند که در سراسر جهان رشد می کنند و به عنوان سبزی، غذای گیاهی یا گیاه دارویی به حساب می آیند. تنوع ژنتیکی و ساختار ژنتیکی 22 جمعیت Lepidium شامل 3 گونه (L. sativum، L. draba و L. latifolium) از ایران با استفاده از 14 نشانگر Start Codon Targeted (SCoT) ارزیابی شد. درصد پلی مورفیسم بالا (98.4%)، محتوای اطلاعات چندشکلی (0.35) و باندهای چندشکلی (4.5) نشان دادند که نشانگرهای SCoT برای تجزیه و تحلیل تنوع ژنتیکی در گونههای Lepidium قابل اعتماد هستند. میانگین قدرت تفکیک (Rp)، شاخص نشانگر (MI) و نسبت چندشکلی موثر (EMR) به ترتیب 5.0، 1.6 و 4.4 بود. بیشترین درصد جایگاه چندشکلی (92.2%)، تنوع ژنی Nei (0.35) و شاخص شانون (0.51) در L. sativum مشاهده شد. بر اساس تجزیه و تحلیل واریانس مولکولی (AMOVA)، تنوع ژنتیکی درون گونه (88.0٪) بیشتر از بین گونه ها (12.0٪) بود. علاوه بر این، بیشترین شباهت بین L. draba و L. latifolium (94/0 = r) مشاهده شد. سطح بالایی از جریان ژنی در جمعیت های Lepidium (Nm = 2.65) یافت شد، که توسط تجزیه خوشه ای همسایه (NJ)، تجزیه مختصات اصلی (PCoA) و تجزیه ساختار، که می تواند تفکیک ضعیف بین کونه های Lepidium را نشان دهد، تایید شد. تجزیه خوشه NJ جمعیت های Lepidium را به سه گروه تقسیم کرد، و گروه بندی جمعیت ها به طور کلی با منشاء آنها مطابقت داشت. این تحقیق اولین مطالعه ای است که مناسب بودن نشانگرهای SCoT را در تنوع ژنتیکی گونه های Lepidium بررسی و اثبات می کند. اطلاعات تجزیه و تحلیل ژنتیکی ارائه شده در اینجا برای برنامه های اصلاح نژاد و حفظ ژرم پلاسم در گونه های Lepidium مفید خواهد بود. | ||
کلیدواژهها [English] | ||
جمعیت, تیره کلم سانان, تجزیه کلاستر, تنوع ژنتیکی, نشانگرهای مولکولی | ||
مراجع | ||
Azizi Jalilian M., Shayesteh K., Danehkar A., and Salmanmahiny A. (2020). A new ecosystem-based land classification of Iran for conservation goals. Environmental Monitoring and Assessment, 192(182). DOI: 10.1007/s10661-020-8145-1. Bansal D., Bhasin P., Yadav O. P., and Punia A. (2012). Assessment of genetic diversity in Lepidium sativum (Chandrasur) a medicinal herb used in folklore remedies in India using RAPD. Journal of Genetic Engineering and Biotechnology, 10(1): 39-45. Baregama Ch., and Goyal A. (2019). Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum Linn.: a review. Asian Journal of Pharmaceutical and Clinical Research, 12(4): 45-50. Beyene Y., Botha A. M., and Myburg A. A. (2005). A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. African Journal of Biotechnology, 4(7): 586-595. Bhalala K. C., Kapadia V. N., Kundariya V. B., and Patel M. A. (2016). Assessment of genetic diversity in garden cress (Lepidium sativum L.) using SSR markers. Advanced Life Sciences, 5: 64-69. Bona M. (2014). Taxonomic revision of Lepidium (Brassicaceae) from Turkey. Journal of the Faculty of Pharmacy of İstanbul Üniversity, 44: 31-62. Botstein D., White R. L., Skolnick M., and Davis R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32(3): 314-331. Chesnokov Y. V., and Artemyeva A. M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology, 50: 571-578. Collard B. C. Y., and Mackill D. J. (2009). Start Codon Targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene–targeted markers in plants. Plant Molecular Biology Reporter, 27: 86-93. Evanno G., Regnaut S., and Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611-2620. Fallahi M., Mohammadi A., and Miri S. M. (2020). The natural variation in six populations of Calendula officinalis L.: A karyotype study. Journal of Genetic Resources, 6(1): 34-40. Frye C. T., and Neel M. C. (2017). Benefits of gene flow are mediated by individual variability in self compatibility in small isolated populations of an endemic plant species. Evolutionary Applications, 10: 551-562. German D. A. (2014). Taxonomic remarks on some Asian Lepidium s. l. (Brassicaceae). Phytotaxa, 186: 97-105. Govindaraj M., Vetriventhan M., and Srinivasan M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015: Article ID 431487. Grover A., and Sharma P. C. (2016). Development and use of molecular markers: past and present. Critical Reviews in Biotechnology, 36(2): 290-302. Hutchison D. W., and Templeton A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53: 1898-1914. Jelvehgar N., Miri S. M., Mostafavi Kh., and Mohammadi A. (2021). Genetic analysis of Lepidium spp. by SSR and ISSR molecular markers. Plant Gene, 28(100332). Kaur T., Hussain K., Koul S., Vishwakarma R., and Vyas D. (2013). Evaluation of nutritional and antioxidant status of Lepidium latifolium Linn.: a novel phytofood from Ladakh. PLoS One, 8(8): e69112. Kumar S., Goyal R., Sheorayan A., Kajla S., Yadav O. P., and Mangal M. (2012). Assessment of genetic diversity in Lepidium sativum using RAPD and ISSR markers. Annals of Biology, 28(2): 93-97. Kumar V., and Yadav H. K. (2019). Assessment of genetic diversity in Lepidium sativum L. using inter simple sequence repeat (ISSR) marker. Physiology and Molecular Biology of Plants, 25: 399-406. Ma J. B., Wang T., Wang X. R., Zhong J. B., Su X., and Du Y. R. (2020). Phylogenetic relationships of two representative Lepidium species (Brassicaceae) in Qinghai province. Pakistan Journal of Botany, 52(5): 1673-1677. Mohammed S., and Tesfaye K. (2015). Molecular genetic diversity study of Lepidium sativum population from Ethiopia as revealed by inter simple sequence repeat (ISSR) markers. African Journal of Biotechnology, 14: 1461-1470. Mahomoodally M. F., Zengin G., Aumeeruddy M. Z., Sezgin M., and Aktumsek A. (2018). Phytochemical profile and antioxidant properties of two Brassicaceae species: Cardaria draba subsp. draba and Descurainia sophia. Biocatalysis and Agricultural Biotechnology, 16: 453-458. Nadeem M. A., Nawaz M. A., Shahid M. Q., Doğan Y., Comertpay G., Yıldız M., Hatipoğlu R., Ahmad F., Alsaleh A., Labhane N., Özkan H., Chung G., and Baloch F. Sh. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2): 261-285. Nasseh Y., and Joharchi M. R. (2019). A new record of Lepidium (Brassicaceae) for the flora of Iran. Nova Biologica Reperta, 6: 347-351. Pathirana R., and Carimi F. (2022). Management and utilization of plant genetic resources for a sustainable agriculture. Plants, 11(2038). Ramadan M. F., and Oraby H. F. (2020). Lepidium sativum seeds: therapeutic significance and health-promoting potential. In Preedy V. R., and Watson R. R. (Eds.), Nuts and seeds in health and disease prevention, Academic Press, 273-289. Ramanatha Rao V., and Hodgkin T. (2002). Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture, 68: 1-19. Robin E., Houliston G. J., and Heenan P. B. (2014). Genetic and morphological variation of two rare species of Lepidium (Brassicaceae) on Mangere Island, Chatham Islands, and implications for their conservation management. Folia Geobotanica, 49: 209-221. Roughani A., and Miri S. M. (2018). Lepidium species as antidiabetic herbal medicines. Proceedings of the First National Congress and International Fair of Medicinal Plants and Strategies for Persian Medicine that Affect Diabetes, October 9-11, Mashhad, Iran. Roughani A., Miri S. M., Hassandokht M. R., Moradi P., and Abdossi V. (2018a). Agro–morphological study on several accessions of garden cress (Lepidium sativum–Brassiaceae) in Iran. Pakistan Journal of Botany, 50: 655-660. Roughani A., Miri S. M., Hassandokht M. R., Moradi P., and Abdossi V. (2018b). Genetic variation within Iranian Lepidium species using morphological traits. Proceedings of the First National Congress and International Fair of Medicinal Plants and Strategies for Persian Medicine that Affect Diabetes, October 9-11, Mashhad, Iran. Roughani A., Miri S. M., Hassandokht M. R., Moradi P., and Abdossi V. (2018c). Morphological variation of some Lepidium draba and L. latifolium populations. Taiwania, 63: 41-48. Roughani A., Miri S. M., Hassandokht M. R., Moradi P., and Abdossi V. (2021). Cytogenetic and micro–morphological studies on several accessions of some Lepidium L. species in Iran. Iranian Journal of Science and Technology Transaction A-science, 45: 417-426. Sandeep C., Kumar A., Rodrigues V., Viswanath S., Shukla A. K., and Sundaresan V. (2020). Morpho-genetic divergence and population structure in Indian Santalum album L. Trees, 34: 1113-1129. Sankhla A. K, Malik C. P., and Parashar M. (2015). A review on Start Codon Targeted (SCoT) marker. Journal of Plant Science and Research, 31(2): 153-160. Shamsolshoara Y., Javadi, H., and Miri S. M. (2020). Karyomorphological study of seven species of the genus Astragalus from Iran. The Iranian Journal of Botany, 26(2): 172-178. Singh B., Jain D., Joshi A., Namrata, Dodiya N. S., Chauhan S., Mittal J., and Singh A. (2020). Molecular diversity analysis and metabolic profiling of seed oil in Lepidium sativum L. genotypes. Plant Molecular Biology Reporter, 38: 641-654. Tadesse L., Mekbib F., Wakjira A., and Tadele, Z. (2018). Genetic diversity in the Ethiopian garden cress (Lepidium sativum L.) using microsatellite markers. Current Plant Biology, 16: 32-40. Velasco-Ramírez A. P., Torres-Morán M. I., Molina-Moret S., Sánchez-González J de J., and Santacruz-Ruvalcaba F. (2014). Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). Electronic Journal of Biotechnology, 17: 65-71. Wright S. (1978). Evolution and genetics of population. Chicago: The University of Chicago Press. Yang S., Xue S., Kang W., Qian Z., and Yi Z. (2019). Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PLoS One, 14(2): e0211471. Zhang Y., Yan H., Jiang X., Wang X., Huang L., Xu B., Zhang X., and Zhang L. (2016). Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST–SSR markers. Hereditas, 153(4). | ||
آمار تعداد مشاهده مقاله: 317 تعداد دریافت فایل اصل مقاله: 220 |