تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,473 |
تعداد دریافت فایل اصل مقاله | 2,845,929 |
Analysis efficiency of Iranian Ajowan ecotypes on hairy root production mediated by different Agrobacterium rhizogenesis strains | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 10، شماره 1 - شماره پیاپی 19، تیر 2021، صفحه 117-127 اصل مقاله (913.2 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2022.17488.1325 | ||
نویسندگان | ||
Narges Moradi1؛ Seyed Ahmad Sadat Noori* 1؛ Ali Fadavi2؛ Seyed Mohammad Mahdi Mortazavian1؛ Ali Pakdin Parizi3 | ||
1Department of Agronomy and Plant Breeding Sciences, University of Tehran, Pakdasht, Tehran, Iran. | ||
2Department of Food Science Technology, University of Tehran, Pakdasht, Tehran, Iran. | ||
3Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran. | ||
تاریخ دریافت: 11 شهریور 1401، تاریخ بازنگری: 08 آذر 1401، تاریخ پذیرش: 13 آذر 1401 | ||
چکیده | ||
Ajowan (Trachyspermum Ammi L.) is one of the most important medicinal plants native to the Middle East and Iran. The antibiotic properties of its essential oils are related to the relatively high content of thymol. In this study, the possibility of hairy root production was investigated in a pre-experimental study considering many factors affecting transgenic efficiency, including explant type, immersion time, and the type of culture medium. Optimal conditions for the pre-experiment were set up based on the completely randomized design with seven Agrobacterium rhizogenes strains (A3, A6, A7, 4404, AATCC15834, R1000, A4) and six selected Ajowan ecotypes (Ardebil, Shiraz, Arak, Sarbishe, Qom, and Rafsanjan). The root-related morphological characteristics were measured to study the effect of main factors on the hairy root production and the bacterial strains in terms of hairy root induction. Based on the results, the highest percentage of hairy roots in Ardebil ecotype was induced by ATCC15834 strain (50%) and the lowest percentage was related to Rafsanjan ecotype induced by A6 (10%). The highest positive and significant correlation was observed in dry and wet weights (r=0.95), root frequency percentage and root length (r=0.80). The highest amount of phenolic compounds in hairy roots (240 mg/g dry weight matter) was associated with the Ardebil ecotype induced by strain ATCC15834. In this study, Shiraz and Ardebil ecotypes were identified as the best ecotypes, A4 and ATCC15834 strains as the most suitable strains, and suggested for future studies. | ||
کلیدواژهها | ||
Agrobacterium rhizogenes؛ Correlation؛ Phenol؛ Trachyspermum Ammi L | ||
عنوان مقاله [English] | ||
بررسی تولید ریشه مویین اکوتیپهای بومی زنیان با استفاده از سویههای مختلف اگروباکتریوم رایزوژنز | ||
نویسندگان [English] | ||
نرگس مرادی1؛ سید احمد سادات نوری1؛ علی فدوی2؛ سید محمد مهدی مرتضویان1؛ علی پاکدین پاریزی3 | ||
1گروه زراعت و علوم اصلاح نباتات، دانشگاه تهران، پاکدشت، تهران، ایران. | ||
2گروه صنایع غذایی، دانشگاه تهران، پاکدشت، تهران، ایران. | ||
3پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
چکیده [English] | ||
زنیان( (Trachyspermum Ammi L) یکی از گیاهان دارویی مهم و بومی خاورمیانه و ایران میباشد که خاصیت آنتیبیوتیکی اسانس آن مربوط به درصد نسبتا بالای تیمول است. در این مطالعه امکان القای ریشه مویین در پیشآزمایشی با بررسی عوامل موثر بر بازده تراریختی شامل نوع ریزنمونه ، مدت زمان غوطهوری ،نوع محیط کشت انجام گرفت و سپس شرایط بهینه برایند پیشآزمایش، در آزمایش فاکتوریل در قالب بلوک های کامل تصادفی، توسط هفت سویه اگروباکتریوم رایزوژنز(A3, A6, A7, 4404, AATCC15834, R1000, A4) در شش اکوتیپ منتخب زنیان(اردبیل، شیراز، اراک، سربیشه، قم و رفسنجان) با اندازهگیری صفات مورفولوژی مرتبط با ریشه مورد بررسی قرار گرفت. نتایج نشان داد تفاوت معنیداری بین اکوتیپهای مختلف از لحاظ میزان تحریکپذیری تولید ریشه مویین و همچنین بین سویههای باکتری از لحاظ القاء ریشه مویین وجود داشت، به طوری که بیشترین درصد ریشه مویین در اکوتیپ اردبیل القاء شده با سویه ATCC15834 (50 %) و کمترین درصد مربوط به اکوتیپ رفسنجان القا شده با سویه A6(10 %)می باشد. از بین صفات اندازهگیری شده بیشترین همبستگی مثبت و معنیدار بین صفات وزن خشک و وزنتر ریشه(r=0.95) ، درصد فراوانی ریشه و طول ریشه (r=0.80) مشاهده شد. بیشترین مقدار ترکیبات فنولی موجود در ریشههای مویین (240 میلی گرم بر گرم ماده خشک)، مربوط به اکوتیپ اردبیل تراریخت شده با سویه ATCC15834 بود. در این تحقیق اکوتیپهای شیراز و اردبیل به عنوان بهترین اکوتیپها و سویههای A4و ATCC15834به عنوان مناسبترین سویهها شناسایی شدند و برای مطالعات آینده پیشنهاد میگردد. | ||
کلیدواژهها [English] | ||
اگروباکتریوم رایزوژنز, فنول, همبستگی, Trachyspermum Ammi L | ||
مراجع | ||
Altamura M. M. (2004). Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development. Journal of Plant Cell Tissue Organ Culture, 77: 89-101. Alviano D. (2009). Search for new alternatives to treat microbial diseases. Journal of Current Pharmaceutical Biotechnology, 10(1): 106-121. Arafa N. M., Gabr A. M. M., Ibrahim M. M., Shevchenko Y., and Smetanska I. (2015). Study the effect of hairy root transformation on rapid growth (growth morphology) of Nepeta cataria in vitro cultures. Journal of Innovations in Pharmaceuticals and Biological Sciences, 2(4): 439-450. Ayadi R., and Tremouillaux-Guiller J. (2003). Root formation from transgenic calli of Ginkgo biloba. Journal of Tree Physiology, 23(10): 713-718. Bairwa R., Sodha R. S., and Rajawat B. S. (2012). Trachyspermum ammi. Pharmacognosy Reviews, 6(11): 56-60. DOI: https://doi.org/10.4103/0973-7847.95871. Biswas T., Mathur A. K., and Mathur A. (2017). A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Applied Microbiology and Biotechnology, 101: 4009-4032. DOI: https:// doi.org/10.1007/s00253-017-8279-4. Boskabady M. H., Alitaneh S., and Alavinezhad A. (2014). Carum copticum L.: a herbal medicine with various pharmacological effects. BioMed Research International, 2014: 569087. DOI: https://doi.org/10.1155/2014/569087. Bruni R., and Sacchetti G. (2009). Factors affecting polyphenol biosynthesis in wild and field grown St. John’sWort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules, 14(2): 682-725. DOI: 10.3390/molecules14020682. Bulgakov V., Gorpenchenko T., Veremeichik G., Shkryl Y., Tchernoded G., Bulgakov D., Aminin D., and Zhuravlev N. (2012). The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiology, 158(3): 1371-1381. DOI: 10.1104/pp.111.191494. Carqueijeiro I., Langley Ch., Grzech D., Koudounas K., Papon N., EO’Connor S., and Courdavault V. (2020). Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anticancer drugs. Current Opinion in Biotechnology, 65: 17-24. DOI: https://doi.org/10.1016/j.copbio.2019.11.017. Chandran H., Meena M., Barupal T., and Sharma K. (2020). Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, 26: e00450. El-Esawi M. A., Elkelish A., Elansary H. O., Ali H. M., Elshikh M., Witczak J., Ahmad M. (2017). Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L. Oxidative Medicine and Cellular Longevity, 2017: 5604746. DOI: 10.1155/2017/5604746. Farsi M., Moshtaghi N., Shahriari F. A., and Raeisi M. (2005). Investigation on growth stability and alkaloid content of transformed hairy roots in Datura stramonium. Agricultural Sciences and Technology, 19(2): 47-56. Gantait S., Mitra M., and Chen J. T. (2020). Biotechnological interventions for ginsenosides production. Journal of Biomolecules, 10: 538. Gantait S., and Mukherjee E. (2021). Hairy root culture technology: applications, constraints and prospect. Applied Microbiology and Biotechnology, 105(1): 35-53. DOI: https://doi.org/10.1007/s00253-020-11017-9. Georgiev M., Pavlov A., and Bley T. (2007). Hairy root type plant in vitro systems as sources of bioactive substances. Applied Microbiology and Biotechnology. 74: 1175-1185. DOI: 10.1007/s00253-007-0856-5. Georgiev M. I., Jutta L. M., and Bley T. (2010). Hairy root culture: copying nature in new bioprocesses. Medicinal Plant Biotechnology. DOI: https://doi.org/10.1079/9781845936785.0156. Giri A., and Narasu M. L. (2000). Transgenic hairy roots: recent trends and applications. Biotechnology Advances, 18: 1-22. Kim Y., Wyslouzil B. E., and Weathers P. J. (2002). Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular & Developmental Biology-Plant, 38: 1-10. DOI: 10.1079/IVP2001243. Krishnamoorthy V., and Madalageri M. B. (1999). Bishop weed (Trachyspermum ammi): an essential crop for north Karnatka. Journal of Medicinal and Aromatic Plant Sciences, 21(4): 996-998. Kumar V., Desai D., and Shriram V. (2014). Hairy root induction in Helictere sisora L. and production of Diosgenin in hairy roots. Journal of Natural Products and Bioprospecting, 4: 107-112. Lan X. Z., and Quan H. (2010). Hairy root culture of Przewalskia tangutica for enhanced production of pharmaceutical tropane alkaloids. Journal of Medicinal Plants Research, 4: 1477-1481. Md Setamam N., Jaafar Sidik N., Abdul Rahman Z., and Che Mohd Zain C. R. (2014). Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants. Journal of BMC Research Notes, 7: 414. Moehninsi A., and Navarre D. A. (2018). Optimization of hairy root induction in Solanum tuberosum. American Journal of Potato Research, 95(6): 650-658. Mulabagal V., and Tsay H-S. (2004). Plant cell cultures - an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2(1): 29-48. Murthy H. N., Dijkstra C., Anthony P., White D. A., Davey M. R., Power J. B., Hahn E. J., and Paek K. Y.(2008). Establishment of Withania somnifera hairy root cultures for the production of withanolide A. Journal of Integrative Plant Biology, 50: 975-981. Niazian M., Sadat-noori S. A., Tohidfar M., and Galuszka P. (2019). Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague): an important industrial medicinal plant. Industrial Crops & Products, 132(February): 29-40. DOI: https://doi.org/10.1016/j.indcrop.2019.02.005. Panda B. M., Mehta U. J., and Hazra S. (2017). Optimizing culture conditions for establishment of hairy root culture of Semecarpus anacardium L. 3 Biotech,7: 21. DOI: 10.1007/s13205-017-0608-x. Pang J., Cuin T., Shabala L., Zhou M., Mendham N., and Shabala S. (2007). Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiology, 145: 266-276. Pavlova O. A., Matveyeva T. V., and Lutova L. A. (2014). rol- Genes of Agrobacterium rhizogenes. Russian Journal of Genetics: Applied Research, 4: 137-145. DOI: https://doi. org/10.1134/S2079059714020063. Rocha J., Eduardo-Figueira M., Barateiro A., Fernandes B. D., and Rosario B. (2015). Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology, 116(5): 398-413. DOI: 10.1111/bcpt.12335. Sahayarayan J. J., Udayakumar R., Arun M., Ganapathi A., Alwahibi M., Aldosari N., Abubaker M., and Morgan A. (2020). Effect of different Agrobacterium rhizogenes strains for in-vitro hairy root induction, total phenolic, flavonoids contents, antibacterial and antioxidant activity of (Cucumis anguria L.). Saudi Journal of Biological Sciences, 27(11): 2972-2979. DOI: https://doi.org/10.1016/j.sjbs.2020.08.050. Samadi A., Carapetian J., Heidary R., Jafari M., and Hssanzadeh A. (2012). Hairy root induction in Linum mucronatum ssp. an anti-tumor lignans production plant. Nothlae Botanicae Hortiagrobatanici Cluj-Napaca, 40(1): 125-131. Sharafi A., Sohi H. H., Azadi P., and Sharafi A. A. (2014). Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiology and Molecular Biology of Plants, 20: 257-262. Sharma K., and Dubey S. (2011). Biotechnology and conservation of medicinal plants. Journal of Experimental Sciences, 2(10): 60-61. Sun M., Shi M., Wang Y., Huang Q., Yuan T., Wang Q., Wang C., Zhou W., and Kai G. (2019). The biosynthesis of phenolic acids is positively regulated by the JA- responsive transcription ERF115 in Salvia miltiorrhiza. Journal of Experimental Botany, 70(1): 243-254. DOI: 10.1093/jxb/ery349. Tiwari R. K., Trivedi M., Guang Z. C., Guo G. Q., and Zheng G. C. (2007). Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Journal of Plant Cell Reports, 26: 199-210. Vamenani R., Pakdin‐Parizi A., Mortazavi M., and Gholami Z. (2020). Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Trachyspermum ammi L. for the efficient production of thymol. Biotechnology and Applied Biochemistry, 67(3): 389-395. DOI: https://doi.org/10.1002/bab.1880. Weber R. L. M., and Bodanese-Zanettini M. H. (2011). Induction of transgenic hairy roots in soybean genotypes by Agrobacterium rhizogenes-mediated transformation. Journal of Pesquisa Agropecuária Brasileira, 46: 1070-1075. Yao S. C., Bai L. H., Lan Z. Z., Tang M. Q., Zhai Y. J., Huang H., and Wei R. C. (2016). Hairy root induction and polysaccharide production of medicinal plant Callerya speciosa Champ. Plant Cell Tissue Organ Culture, 126: 177-186. Zarshenas M. M., Moein M. R., Samani S. M., and Petramfar P. (2013). An overview on ajwain (Trachyspermum ammi) pharmacological effect: modern and traditional. Journal of Natural Remedies, 14(1): 98-105. Zhang Y., Mian M. R., and Bouton J. H. (2006). Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Science, 46(2): 497-511. Zheng Q., Xu Z., Sun M., Liang H., WangY., Liu W., Huang P., and Zeng J. (2021). Hairy root induction and benzylisoquinoline alkaloid production in Macleaya microcarpa. Plant Cell, Tissue and Organ Culture (PCTOC), 147: 189-196. DOI: https://doi.org/10.1007/s11240-021-02109-z. Zhu L. H., Holefors A., Ahlman A., Xue Z. T., and Welander M. (2001). Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Science, 160(3): 433-439. DOI: 10.1016/S0168-9452(00)00401-5. Zhou L. G., and Wu J. Y. (2006). Development and application of medicinal plant tissue cultures for production of drugs and herbal medicinals in China. Natural Product Reports, 23(5): 789-810. | ||
آمار تعداد مشاهده مقاله: 352 تعداد دریافت فایل اصل مقاله: 173 |