تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,131 |
تعداد مشاهده مقاله | 4,251,763 |
تعداد دریافت فایل اصل مقاله | 2,846,155 |
Agrobacterium-mediated transient expression of basic fibroblast growth factor (bFGF) in fenugreek (Trigonella foenum-graecum L.) | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 1، دوره 11، شماره 1 - شماره پیاپی 21، مرداد 2022، صفحه 1-11 اصل مقاله (897.7 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2022.17766.1324 | ||
نویسندگان | ||
Hojat Taheri؛ Ramin Hosseini* | ||
Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran. | ||
تاریخ دریافت: 04 شهریور 1401، تاریخ بازنگری: 21 آذر 1401، تاریخ پذیرش: 22 آذر 1401 | ||
چکیده | ||
The basic fibroblast growth factor (bFGF) has the potential applications as a therapeutic agent for tissue repair, skin wound healing, and recovery of the neurodegenerative diseases. In this study, after the optimization of all steps in transient transformation by Agrobacterium, the bFGF gene expression was examined in fenugreek leaves infiltrated with different Agrobacterium strains under optimal conditions. These include the AS concentration of 200 μM, bacterial density (OD) of 1.0 OD600, and co-cultivation time for 10 days. The transient expression of the insert was verified in the infiltrated leaves by qRT-PCR analysis. The production of the recombinant bFGF protein was also rectified by Western blot analysis. In addition, the production titers of the recombinant bFGF protein were measured by enzyme-linked immunosorbent assay (ELISA) in all infiltrated leaf samples. Although, there were no significant differences in relative levels of bFGF transcript among the different treatments, but the accumulation levels of recombinant bFGF were significantly affected by Agrobacterium strains. It is possibly due to the post-transcriptional gene silencing. The highest accumulation level of recombinant protein was obtained in leaf samples infiltrated by the EHA105 strain, estimated to be about 3.85 ng bFGF g−1 FW. | ||
کلیدواژهها | ||
Agrobacterium؛ Fibroblast growth factor؛ GUS activity؛ Histochemical assay؛ Transient expression | ||
عنوان مقاله [English] | ||
بیان موقت فاکتور رشد فیبروبلاستی بازی (bFGF) در گیاه شنبلیله (Trigonella foenum-graecum L.) توسط اگروباکتریوم | ||
نویسندگان [English] | ||
حجت طاهری؛ رامین حسینی | ||
گروه بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران. | ||
چکیده [English] | ||
فاکتور رشد فیبروبلاست بازی (bFGF) کاربردهای درمانی بالقوه ای به عنوان یک عامل درمانی برای ترمیم بافت، ترمیم زخم های پوستی و بهبود بیماری های عصبی دارد.در این پژوهش، پس از بهینه سازی تمام مراحل انتقال موقت توسط آگروباکتریوم، بیان ژن bFGF در برگ های شنبلیله آلوده شده با سویه های مختلف آگروباکتریوم تحت شرایط بهینه شامل غلظت 200 میکرومولاراستوسیرینگون، غلظت باکتریایی (OD) 1.0 OD600 و فاصله زمانی 10 روز پس از اینفیلتراسیون مورد بررسی قرار گرفت. بیان موقت در برگ های تزریق شده شنبلیله توسط آنالیز qRT-PCR تایید شد تولید پروتئین نوترکیب bFGF نیز توسط آنالیز وسترن بلات مورد تایید قرار گرفت. علاوه بر این، غلظت های پروتئین نوترکیب bFGF تولید شده توسط آنالیز الایزا در همه نمونه های برگی تزریق شده اندازه گیری شد. اگر چه تفاوت معنی داری در سطوح نسبی رونوشت bFGF در بین نمونه های مختلف وجود نداشت اما سطوح تجمع پروتئین نوترکیب bFGF به طور معنی دار تحت تاثیر سویه های اگروباکتریوم قرار گرفت که احتمالا به علت خاموشی ژن پس از رونویسی است. بیشترین پروتئین تولید شده bFGF در سویهEHA105 و به مقدار 85/3 نانو گرم در هر گرم وزن برگ به دست آمد. بیشترین پروتئین تولید شده bFGF در سویهEHA105 و به مقدار 3.85 نانو گرم در هر گرم وزن برگ به دست آمد. | ||
کلیدواژهها [English] | ||
واژه های کلیدی: اگروباکتریوم, فاکتور رشد فیبروبلاستی, فعالیت ژن بتاگلوکورونیداز, سنجش هیستوشیمیایی, بیان موقت | ||
مراجع | ||
Acharya S. N., homas J. E., and Basu S. K. (2008). Fenugreek, an alternative crop for semiarid regions of North America. Crop Science, 48: 841-853. An N., Ou J., Jiang D., Zhang L., Liu J., and Fu K. (2013). Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds. International Journal of Molecular Sciences, 14: 3556-3567. Bhatti M. A., and Khan M. T. (1996). Antibacterial activity of Trigonella foenum-graecum seeds. Fitoterapia, 67: 372-374. Bikfalvi A., Klein S., Pintucci G., and Rifkin D. B. (1997). Biological roles of fibroblast growth factor-2. Endocrine Reviews, 18: 26-45. Bohlen P., Baird A., Esch F., Ling N., and Gospodarowicz D. (1984). Isolation and partial molecular characterization of pituitary fibroblast growth factor. Proceedings of the National Academy of Sciences of the United States of America, 81: 5364-5368. Bradford M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Chen S., Chen S. T., Sun Y., Xu Z., Wang Y., and Yao S. Y. (2019). Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer’s disease. Redox Biology, 22: 101133. Dai W., Cheng Z., and Sargent W. (2003). Plant regeneration and Agrobacterium-mediated transformation of two elite aspen hybrid clones from in vitro leaf tissues. In Vitro Cellular & Developmental Biology-Plant, 39: 6-11. Delrieu I. (2000). The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. FEBS Letters, 468: 6-10. Ding S. H., Huang L. Y., Wang Y. D., Sun H. C., and Xiang Z. H. (2006). High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity. Biotechnology Letters, 28: 869-875. Gospodarowicz D., Bialecki H., and Greenburg G. (1978). Purification of the fibroblast growth factor activity from bovine brain. Journal of Biological Chemistry, 253: 3736-3743. Heidari-Japelaghi R., Haddad R., and Garoosi G. A. (2011). Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Molecular Biotechnology, 49: 129-137. Heidari-Japelaghi R., Valizadeh M., Haddad R., Dorani-Uliaie E., and Jalali-Javaran M. (2019). Elastin-like polypeptide fusions enhance transient expression of human IFN-γ in tobacco leaves. South African Journal of Botany, 125: 321-328. Heidari-Japelaghi R., Valizadeh M., Haddad R., Dorani-Uliaie E., and Jalali-Javaran M. (2020). Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expression and Purification, 173: 105616. Huang J., Wei Z., An H., and Zhu Y. (2001). Agrobacterium tumefaciens-mediated transformation of rice with the spider insecticidal gene conferring resistance to leaf folder and striped stem borer. Cell Research, 11: 149-155. Imaizumi M., Nakamura R., Nakaegawa Y., Dirja B. T., Tada Y., and Tani A. (2019). Regenerative potential of basic fibroblast growth factor contained in biodegradable gelatin hydrogel microspheres applied following vocal fold injury: Early effect on tissue repair in a rabbit model. Brazilian Journal of Otorhinolaryngology, 87(3): 274-283. Janssen B. J., and Gardner R. C. (1990). Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Molecular Biology, 14: 61-72. Jefferson R. A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology, 5: 387-405. Ji X. Y., Zheng L., Liu Y. J., Nie X. G, Liu S. N., and Wang Y. C. (2014). A transient transformation system for the functional characterization of genes involved in stress response. Plant Molecular Biology Reporter, 32: 732-739. Kwong K. W. Y., Ng K. L., Lam C. C., Wang Y. Y., and Wong W. K. R. (2013). Authentic human basic fibroblast growth factor produced by secretion in Bacillus subtilis. Applied Microbiology and Biotechnology, 97: 6803-6811. Lacroix B., and Citovsky V. (2013). The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. The International Journal of Developmental Biology, 57: 467-81. Li H., Li K., Guo Y., Guo J., Miao K., and Botella J. R. (2018). A transient transformation system for gene characterization in upland cotton (Gossypium hirsutum). Plant Methods, 14: 50. Ma L., Lukasik E., Gawehns F., and Takken F. L. W. (2012). The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. Methods in Molecular Biology, 835: 61-74. McCullen C. A., and Binns A. N. (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annual Review of Cell and Developmental Biology, 22: 101-127. Mo R., Huang Y., Yan S., Zhang Q., and Luo Z. (2015). Development of Agrobacterium-mediated transient transformation in persimmon (Diospyros kaki Thunb.). Scientia Horticulturae, 192: 29-37. Nam J., Matthysse A. G., and Gelvin S. B. (1997). Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell, 9: 317-333. Poude S. B., Min C. K., Lee J. H., Shin Y. J., Kwon T. H., Jeon Y. M., and Lee J. C. (2019). Local supplementation with plant-derived recombinant human FGF2 protein enhances bone formation in critical-sized calvarial defects. Journal of Bone and Mineral Metabolism, 37: 900-912. Puri D., Prabhu K. M., and Murthy P. S. (2002). Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds. Indian Journal of Physiology and Pharmacology, 46: 457-462. Qadir A., Ali N., Jan S. A., Rabbani M. A., Khurshid H., Nouman A., and Ullah F. (2017). Characterization of agromorphological variation in exotic fenugreek (Trigonella foenum-graecum L.) germplasm. Journal of Biodiversity and Environmental Science, 10: 71-79. Reuter L. J., Bailey M. J., Joensuu J. J., and Ritala A. (2014). Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells. Plant Biotechnology Journal, 12: 402-410. Sandhya D., Jogam P., Venkatapuram A., Savitikadi P., Peddaboina V., Allini V., and Abbagani S. (2022). Highly efficient Agrobacterium-mediated transformation and plant regeneration system for genome engineering in tomato. Saudi Journal of Biological Sciences, 29:103292. Sedaghati B., Haddad R., and Bandehpour M. (2020). Transient expression of human serum albumin (HSA) in tobacco leaves. Molecular Biology Reports, 47: 7196-7177. Shamloul M., Trusa J., Mett V., and Yusibov V. (2014). Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. Journal of Visualized Experiments (JoVE), 86: e51204. Song J. A., Koo B. K., Chong S. H., Kwak J., Ryu H. B., and Nguyen M. T. (2013). Expression and purification of biologically active human FGF2 containing the b′a′ domains of human PDI in Escherichia coli. Applied Biochemistry and Biotechnology, 170: 67-80. Sundaram S., and Purwar S. (2011). Assessment of genetic diversity among fenugreek (Trigonella foenum-graecum L.), using RAPD molecular markers. Journal of Medicinal Plants Research, 5: 1543-1548. Tiran D. (2003). The use of fenugreek for breast feeding women. Complementary Therapies in Nursing and Midwifery, 9: 155-156. Vaidya K., Ghosh A., Kumar V., Chaudhary S., Srivastava N., and Katudia K. (2013). De novo transcriptome sequencing in Trigonella foenum-graecum L. to identify genes involved in the biosynthesis of diosgenin. The Plant Genome, 6: 1-11. Vancanneyt G., Schmidt R., O’Connor-Sanchez A., Willmitzer L., and Rocha-Sosa M. (1990). Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Molecular Genetics and Genomics, 220: 245-250. Voinnet O., Rivas S., Mestre P., and Baulcombe D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant Journal, 33: 949-956. Wang Y. P., Wei Z. Y., Zhong X. F., Lin C. J., Cai Y. H., and Ma J. (2016). Stable expression of basic fibroblast growth factor in chloroplasts of tobacco. International Journal of Molecular Sciences, 17: 19. Wu H. Y., Liu K. H., Wang Y. C., Wu J. F., Chiu W. L., and Chen C. Y. (2014). AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods, 10:19. Wu X., Kamei K., Sato H., Sato S., Takano R., and Ichida M. (2001). High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in silkworm (Bombyx mori L.) using recombinant baculovirus. Protein Expression and Purification, 21: 192-200. Xu J., Dolan M. C., Medrano G., Cramer C. L., and Weathers P. J. (2012). Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnology Advances, 30: 1171-1184. Yamashita T., Yoshioka M., and Itoh N. (2000). Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochemical and Biophysical Research Communications, 277: 494-498. Yang L., Wang H., Liu J., Li L., Fan Y., and Wang X. (2008). A simple and effective system for foreign gene expression in plants via root absorption of agrobacterial suspension. Journal of Biotechnology, 134: 320-324. Yi S., Yang J., Huang J., Guan L., Du L., and Guo Y. (2015). Expression of bioactive recombinant human fibroblast growth factor 9 in oil bodies of Arabidopsis thaliana. Protein Expression and Purification, 116: 127-132. Young N. D., Mudge J., and Ellisz T. H. (2003). Legume genomes: More than peas in a pod. Current Opinion in Plant Biology, 6: 199-204. Zechel S., Werner S., Unsicker K., Von Bohlen., and Halbach O. (2010). Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. The Neuroscientist, 16: 357-373. Zhan J., Xu H., Zhong Y., Wu Q., and Liu Z. (2020). Surface modification of patterned electrospun nanofibrous films via the adhesion of DOPA-bFGF and DOPA-ponericin G1 for skin wound healing. Materials & Design, 188: 108432. Zhong L., Zhang Y., Liu H., Sun G., Chen R., and Song S. (2016). Agrobacterium-mediated transient expression via root absorption in flowering Chinese cabbage. SpringerPlus, 5: 1825. Zou H., Nie X., Zhang Y., Hu M., and Zhang Y. A. (2008). Effect of basic fibroblast growth factor on the proliferation, migration and phenotypic modulation of airway smooth muscle cells. Chinese Medical Journal, Peking, 121: 424-429. | ||
آمار تعداد مشاهده مقاله: 434 تعداد دریافت فایل اصل مقاله: 276 |