تعداد نشریات | 20 |
تعداد شمارهها | 370 |
تعداد مقالات | 3,040 |
تعداد مشاهده مقاله | 4,094,042 |
تعداد دریافت فایل اصل مقاله | 2,731,692 |
Study of the presence of DREB1/ CBF gene family in Viola tricolor | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 1، دوره 10، شماره 2 - شماره پیاپی 20، دی 2021، صفحه 1-12 اصل مقاله (1.11 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.17723.1322 | ||
نویسندگان | ||
Elyas Nezami؛ Ali Deljou* | ||
Department of Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. | ||
تاریخ دریافت: 01 شهریور 1401، تاریخ بازنگری: 23 دی 1401، تاریخ پذیرش: 01 بهمن 1401 | ||
چکیده | ||
Transcription factors are known as factors having the ability to simultaneously activate several genes in plant and animal genomes. Because of their significance in responding to environmental stresses like salinity, drought, temperature changes, etc., a group of these transcription factors known as DREB1/ CBF (Dehydration-Responsive Element Binding Protein 1/ C-repeat binding factor) gene family has been extensively studied in various plant species. In this research, considering the particular and well-stablished role of the genes of this family in cold stress in plants, Viola tricolor (wild pansy), as a cold resistant species, was chosen to identify this gene family. For this purpose, viola plants in the multi-leaf stage were gradually transferred to a -8 °C chamber and subjected to subfreezing treatment for 18 h. Using bioinformatics analysis based on NCBI database, the initial identification of the AP2/ ERF (APETALA2/ Ethylene-Responsive Factor) conserved region in the genes of the members of this family was carried out and the consensus sequence was used for primer design. The sequencing result revealed considerable sequence similarity in this region with genes found in other plant species. Thus, as predicted, this work established the presence of the DREB1 gene family in V. tricolor. The closest species to V. tricolor was also determined by drawing the phylogenetic tree based on the identified region. The gene expression pattern analysis revealed a significant increase in expression of this gene under cold stress conditions. | ||
کلیدواژهها | ||
CBF/DREB1 gene family؛ Viola tricolor؛ Transcription factors؛ Subfreezing stress؛ Gene expression؛ Phylogenetic tree | ||
عنوان مقاله [English] | ||
مطالعه حضور خانواده ژنی DREB1/ CBF در بنفشه سه رنگ | ||
نویسندگان [English] | ||
الیاس نظامی؛ علی دلجو | ||
گروه بیوتکنولوژی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران. | ||
چکیده [English] | ||
فاکتورهای رونویسی به عنوان عواملی که قابلیت فعال سازی همزمان چندین ژن را در ژنوم های گیاهی و جانوری دارند، شناخته شده اند. دسته ای از این فاکتورهای رونویسی بنام خانواده ژنی DREB1/ CBF (C-repeat binding factor/ Dehydration-Responsive Element Binding Protein 1) به علت نقش کلیدی آن ها در پاسخ به تنش های محیطی اعم از شوری، خشکی، تغییرات دمایی و ... به صورت گسترده ای در گونه های مختلف گیاهی مورد مطالعه قرار گرفته اند. در این تحقیق، با توجه به نقش ویژه و اثبات شده ژن های موجود در این خانواده در تنش سرما در گیاهان، Viola tricolor، به عنوان یک گونه مقاوم به سرما، برای شناسایی این خانواده ژنی انتخاب شد. برای این کار گیاهان بنفشه در مرحله چندبرگی و بصورت تدریجی به محفظه ای با دمای 8- درجه سانتی گراد منتقل شدند و به مدت 18 ساعت تحت تیمار انجمادی قرار گرفتند. استخراج RNA کل از بافت برگ انجام شد و برای سنتز cDNA مورد استفاده قرار گرفت. با استفاده از آنالیز بیوانفورماتیکی در پایگاه داده NCBI شناسایی اولیه ناحیه حفاظت شده AP2/ ERF (APETALA2/ Ethylene-Responsive) در ژن های اعضای این خانواده انجام شد و توالی حاصل برای طراحی پرایمر مورد استفاده قرار گرفت. نتیجه توالی یابی تشابه توالی بالا را در این ناحیه با ژن های شناسایی شده در سایر گونه های گیاهی نشان داد. بنابراین مطابق پیش بینی، در این مطالعه حضور خانواده ژنی DREB1 در گونه V. tricolor، اثبات شد. رسم درخت فیلوژنتیک براساس ناحیه شناسایی شده نیز نزدیک ترین گونه ها به ویولا تریکالر را مشخص نمود. بررسی الگوی بیان ژن افزایش قابل توجه در بیان این ژن را در شرایط استرس سرمایی نشان داد. | ||
کلیدواژهها [English] | ||
خانواده ژنی CBF/DREB1, بنفشه سه رنگ, فاکتورهای رونویسی, استرس دمای زیر صفر, بیان ژن, درخت فیلوژنتیک | ||
مراجع | ||
Adhikari L., Makaju S. O., Lindstrom O. M., and Missaoui A. M. (2021). Mapping freezing tolerance QTL in alfalfa: based on indoor phenotyping. BMC Plant Biology, 21(1): 1-13. Agarwal P. K., Agarwal P., Reddy M. K., and Sopory S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25(12): 1263-1274. Alisoltani A., Shiran B., Fallahi H., and Ebrahimie E. (2015). Gene regulatory network in almond (Prunus dulcis Mill.) in response to frost stress. Tree Genetics and Genomes, 11(5): 1-15. Ambily P. K., Thomas M., Sreelatha S., Krishnakumar R., Annamalainathan K., and Jacob J. (2018). Expression analysis of rubber biosynthetic pathway genes in Hevea brasiliensis. Journal of Plantation Crops, 46(2): 102-111. Baker S. S., Wilhelm K. S., and Thomashow M. F. (1994). The 5’‐region of Arabidopsis thaliana cor15a has cis540 acting elements that confer cold‐, drought‐and ABA‐regulated gene expression. Plant Molecular Biology, 24(5): 701-713. DOI: 10.1007/BF00029852. Breverton T. (2011). Breverton’s complete herbal: A book of remarkable plants and their uses. Quercus Publishing, London, UK., ISBN-13: 9780857384126, pp. 384. Charu L., and Manjo P. (2011). Role of DREB in regulation of abiotic stress responses in plant. Journal of Experimental Botany, 10: 1-18. Chen Y., Yang J., Wang Z., Zhang H., Mao X., and Li C. (2013). Gene structures, classification, and expression models of the DREB transcription factor subfamily in Populus trichocarpa. The Scientific World Journal. DOI: https://doi.org/10.1155/2013/954640. Chinnusamy V., Ohta M., Kanrar S., Lee B. H., Hong X., Agarwal M., and Zhu J. K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development, 17(8): 1043-1054. Deljou A., Hosseini-Vasoukolaei M., Goudarzi S., Falahatian S., Mirzaie-Asl A., Hosseini-Vasoukolaei N., and Shad M. A. A. (2016). Differential gene expression in response to cold stress in Viola wittrockiana. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 97(2): 87-94. DOI: https://doi.org/10.5114/bta.2016.60779. Dietz K. J., Vogel M. O., and Viehhauser, A. (2010). AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma, 245(1): 3-14. Dubouzet J. G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E. G., Miura S., Seki M., Shinozaki K., and Yamaguchi‐Shinozaki K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. The Plant Journal, 33(4): 751-763. Fujita Y., Fujita M., Shinozaki K., and Yamaguchi-Shinozaki K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124(4): 509-525. Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M., and Thomashow M. F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold‐induced COR gene expression. The Plant Journal, 16(4): 433-442. Goering R., Larsen S., Tan J., Whelan J., and Makarevitch I. (2021). QTL mapping of seedling tolerance to exposure to low temperature in the maize IBM RIL population. Plos One, 16(7): e0254437. Guy C. L. (1990). Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Biology, 41(1): 187-223. Guy C. L., Niemi K. J., and Brambl R. (1985). Altered gene expression during cold acclimation of spinach. Proceedings of the National Academy of Sciences, 82(11): 3673-3677. Grieve M. (1931). A modern herbal. Jonathan Cape Ltd, London. Haake V., Cook D., Riechmann J., Pineda O., Thomashow M. F., and Zhang J. Z. (2002). Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology, 130(2): 639-648. Heo J., van Tienderen P., and Schranz M. E. (2018). Cloning and functional analysis of three cold regulated CBF genes in the overwintering crucifer Boechera stricta. International Journal of Agriculture and Biology, 20(3): 594-600. Kanaya E., Nakajima N., Morikawa K., Okada K., and Shimura Y. (1999). Characterization of the Transcriptional Activator CBF1 from Arabidopsis thaliana: evidence for cold denaturation in regions outside of the DNA binding domain. Journal of Biological Chemistry, 274(23): 16068-16076. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., and Shinozaki K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17(3): 287-291. Kidokoro S., Yoneda K., Takasaki H., Takahashi F., Shinozaki K., and Yamaguchi-Shinozaki K. (2017). Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. The Plant Cell, 29(4): 760-774. Kidokoro S., Shinozaki K., and Yamaguchi-Shinozaki K. (2022). Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science. Kindgren P., Ard R., Ivanov M., and Marquardt S. (2018). Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nature Communications, 9(1): 1-11. Kumar A., Sengar R. S., Singh A., Dixit R., and Singh R. (2018). Biotechnological tools for enhancing abiotic stress tolerance in plant. In Eco-Friendly Agro-Biological Techniques for Enhancing Crop Productivity, Springer, Singapore, 147-172. Lata C., and Prasad M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 62(14): 4731-4748. Le M. Q., Pagter M., and Hincha D. K. (2015). Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. Plant Molecular Biology, 87(1): 1-15. Levitt J. (1980). Responses of plants to environmental stress, Volume 1: Chilling, freezing, and high temperature stresses. Academic Press, Cambridge. Li X., Liu C., Zhao Z., Ma D., Zhang J., Yang Y., Liu Y., and Liu H. (2020). COR27 and COR28 are novel regulators of the COP1–HY5 regulatory hub and photomorphogenesis in Arabidopsis. Plant Cell, 32(10): 3139-3154. Lim C. J., Hwang J. E., Chen H., Hong J. K., Yang K. A., Choi M. S., Lee K. O., Chung W. S., Lee S. Y., and Lim C. O. (2007). Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochemical and Biophysical Research Communications, 362(2): 431-436. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., and Shinozaki K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 10(8): 1391-1406. Maruyama K., Takeda M., Kidokoro S., Yamada K., Sakuma Y., Urano K., Fujita M., Yoshiwara K., Matsukura S., Morishita Y., Sasaki R., Suzuki H., Saito K., Shibata D., Shinozaki K., and Yamaguchi-Shinozaki K. (2009). Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiology, 150(4): 1972-1980. DOI: 10.1104/pp.109.135327. Novillo F., Medina J., and Salinas J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences, 104(52): 21002-21007. Magnani E., Sjölander K., and Hake S. (2004). From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. The Plant Cell, 16(9): 2265-2277. McKhann H. I., Gery C., Bérard A., Lévêque S., Zuther E., Hincha D. K., Mita S. D., Brunel D., and Téoulé E. (2008). Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biology, 8: 105. DOI: https://doi.org/10.1186/1471-2229-8-105. Medina J., Bargues M., Terol J., Pérez-Alonso M., and Salinas J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 119(2): 463-470. Najeeb S., Mahender A., Anandan A., Hussain W., Li, Z., and Ali J. (2021). Genetics and Breeding of Low-Temperature Stress Tolerance in Rice. Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives, 221-280. Nakashima K., Ito Y., and Yamaguchi-Shinozaki K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1): 88-95. Neilson K. A., Gammulla C. G., Mirzaei M., Imin N., and Haynes P. A. (2010). Proteomic analysis of temperature stress in plants. Proteomics, 10(4): 828-845. Pfaffl M. W., Horgan G. W., and Dempfle L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9): e36-e36. Qin F., Kakimoto M., Sakuma Y., Maruyama K., Osakabe Y., Tran L. S. P., Shinozaki K., and Yamaguchi‐Shinozaki K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 50(1): 54-69. DOI: 10.1111/j.1365-313X.2007.03034.x. Ritonga F. N., and Chen S. (2020). Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9(5): 560. Rodziewicz P., Swarcewicz B., Chmielewska K., Wojakowska A., and Stobiecki M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum. Sakuma Y., Liu Q., Dubouzet J. G., Abe H., Shinozaki K., and Yamaguchi-Shinozaki K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290(3): 998-1009. Salvo M., Rey F., Arruabarrena A., Gambetta G., Rodrigo M. J., Zacarías L., and Lado J. (2021). Transcriptional analysis of C-repeat binding factors in fruit of citrus species with differential sensitivity to chilling injury during postharvest storage. International Journal of Molecular Sciences, 22(2): 804. Sharoni A. M., Nuruzzaman M., Satoh K., Shimizu T., Kondoh H., Sasaya T., Choi I. R., Omura T., and Kikuchi S. (2011). Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant and Cell Physiology, 52(2): 344-360. DOI: 10.1093/pcp/pcq196. Shinwari Z. K., Nakashima K., Miura S., Kasuga M., Seki M., Yamaguchi-Shinozaki K., and Shinozaki K. (1998). An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochemical and Biophysical Research Communications, 250(1): 161-170. Shu Y., Li W., Zhao J., Zhang S., Xu H., Liu Y., and Guo C. (2017). Transcriptome sequencing analysis of alfalfa reveals CBF genes potentially playing important roles in response to freezing stress. Genetics and Molecular Biology, 40: 824-833. Stockinger E. J., Gilmour S. J., and Thomashow M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences, 94(3): 1035-1040. Tang K., Zhao, L., Ren Y., Yang S., Zhu J. K., and Zhao C. (2020). The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. Journal of Integrative Plant Biology, 62(3): 258-263. Tang J., Wang C. K., Pan X., Yan H., Zeng G., Xu W., He W., Daly N. L., Craik D. J., and Tan N. (2010). Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides, 31(8): 1434-1440. DOI: 10.1016/j.peptides.2010.05.004. Thomashow M. F. (1994). Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. Arabidopsis, 807-834. Thomashow M. F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology, 50(1): 571-599. Vazquez-Hernandez M., Romero I., Escribano M. I., Merodio C., and Sanchez-Ballesta M. T. (2017). Deciphering the role of CBF/DREB transcription factors and dehydrins in maintaining the quality of table grapes cv. autumn royal treated with high CO2 levels and stored at 0 C. Frontiers in Plant Science, 8: 1591. Winfield M. O., Lu C., Wilson I. D., Coghill J. A., and Edwards K. J. (2010). Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnology Journal, 8(7): 749-771. Wang X. C., Zhao Q. Y., Ma C. L., Zhang Z. H., Cao H. L., Kong Y. M., ... and Yang Y. J. (2013). Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics, 14(1): 1-15. Xu Z. S., Chen M., Li L. C., and Ma Y. Z. (2011). Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 53(7): 570-585. DOI: https://doi.org/10.1111/j.1744-7909.2011.01062.x. Zhao C., Zhang Z., Xie S., Si T., Li Y., and Zhu J. K. (2016). Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology, 171(4): 2744-2759. | ||
آمار تعداد مشاهده مقاله: 248 تعداد دریافت فایل اصل مقاله: 255 |