تعداد نشریات | 19 |
تعداد شمارهها | 373 |
تعداد مقالات | 3,059 |
تعداد مشاهده مقاله | 4,144,194 |
تعداد دریافت فایل اصل مقاله | 2,765,000 |
Evaluation of freezing stress tolerance in promising durum wheat and its relationship with physiological traits and molecular markers | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 4، دوره 10، شماره 2 - شماره پیاپی 20، دی 2021، صفحه 37-56 اصل مقاله (1.1 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.18097.1331 | ||
نویسندگان | ||
Fatemeh Mohammadi Azar1؛ Omid Sofalian* 1؛ Ali Asghari1؛ Asghar Ebadi1؛ Rahmatollah Karimizadeh2 | ||
1Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
2Gachsaran Agricultural Research Institute, Kohgiluyeh and Boyerahmad Agricultural and Natural Resources Research and Education Center, Gachsaran, Iran. | ||
تاریخ دریافت: 29 آبان 1401، تاریخ بازنگری: 16 فروردین 1402، تاریخ پذیرش: 16 فروردین 1402 | ||
چکیده | ||
Cold tolerance in wheat is one of the most important factors effective in the field of winter damage in Iran. Freezing and laboratory tests were carried out in the greenhouse and plant breeding laboratory of Mohaghegh Ardabili University in 2018-20 to achieve the set goals. The plant materials used included 45 promising durum wheat lines. Durum wheat genotypes were planted in a randomized complete block design with three stress levels. The results of the variance analysis of LT50 showed a significant difference between the genotypes at the probability level of 1%. LT50 varied between -0.754 and -26.609 values. The survival percentage of plants decreased with increasing stress. In clustering based on the LT50, the genotypes were divided into 5 groups. The dendrogram obtained from the cluster analysis based on all the traits divided lines in the control level, -8 °C, -10 °C, and -12 °C into 8, 6, 9 and 7 different groups. Four factors were identified in the control level, 5 in the first stress, 6 in the second stress, and 5 in the third stress level. To evaluate the relationship between the measured traits and RAPD molecular markers, stepwise multiple regression analysis was performed and significant relationships were observed. LT50 showed a correlation with 9 markers. Finally, according to the tests conducted, lines 1, 2, 3, 4, 5, 6, 7, 8, 10, and 23 were recognized sensitive lines and lines 11, 12, 13, 14, 15, 17, 18, 19, 21, 29, 31 and 27 were recognized as resistant. | ||
کلیدواژهها | ||
Durum wheat؛ Freezing stress؛ LT50؛ Molecular marker | ||
عنوان مقاله [English] | ||
ارزیابی مقاومت به سرما در ژنوتیپهای امیدبخش گندم دوروم و ارتباط آن با صفات فیزیولوژیکی و نشانگرهای مولکولی | ||
نویسندگان [English] | ||
فاطمه محمدی آذر1؛ امید سفالیان1؛ علی اصغری1؛ اصغر عبادی1؛ رحمت اله کریمی زاده2 | ||
1گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران. | ||
2مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کهگیلویه و بویراحمد، گچساران، ایران. | ||
چکیده [English] | ||
تحمل سرما در گندم یکی از مهمترین عوامل موثر در زمینه خسارت زمستانه در ایران است. برای دستیابی به اهداف تعیین شده، آزمایشات انجماد و آزمایشگاهی در آزمایشگاه اصلاح نباتات و گلخانه دانشگاه محقق اردبیلی در سال 99-97 انجام شد. مواد گیاهی مورد استفاده شامل 45 لاین گندم دوروم امید بخش بود. ژنوتیپهای گندم دوروم در قالب طرح بلوکهای کامل تصادفی با سه تکرار کشت شدند. نتایج تجزیه واریانس LT50 اختلاف معنی داری را بین ژنوتیپ ها در سطح احتمال 1 درصد نشان داد. LT50 بین مقادیر 754/0- و 609/26- متغیر بود. درصد بقای گیاهان با افزایش تنش کاهش یافت. در خوشهبندی بر اساس LT50، ژنوتیپها به 5 گروه تقسیم شدند. دندروگرام حاصل از تجزیه خوشه ای بر اساس تمامی صفات، لاین ها را در سطح شاهد 8-، 10- و 12- درجه سانتی گراد به 8، 6، 9 و 7 گروه مختلف تقسیم کرد. 4 عامل در سطح شاهد، 5 عامل در تنش اول، 6 عامل در تنش دوم و 5 عامل در سطح تنش سوم شناسایی شدند. برای ارزیابی رابطه بین صفات اندازه گیری شده و نشانگرهای مولکولی RAPD، آنالیز رگرسیون چندگانه گام به گام انجام شد و روابط معنی داری مشاهده شد. LT50 با 9 نشانگر همبستگی نشان داد. در نهایت با توجه به تست های انجام شده، خطوط 1، 2، 3، 4، 5، 6، 7، 8، 10 و 23 خطوط حساس و خطوط 11، 12، 13، 14، 15، 17، 18، 19، 21، 29، 31 و 27 به عنوان مقاوم شناخته شدند. | ||
کلیدواژهها [English] | ||
گندم دوروم, تنش یخ زدگی, نشانگر مولکولی, LT50 | ||
مراجع | ||
Akcura M., Kaya Y., Taner S., and Ayranici R. (2006). Parametric stability analysis for grain yield of durum wheat. Plant Soil Environment, 52: 254-262. DOI: 10.17221/3438-PSE. Agriculture and Agri-Food Canada. (2019). Canada: Outlook for Principal Field Crops. Available online: http://www.agr.gc.ca/eng/industry-markets-and-trade/canadian-agri-food-sector-intelligence/crops/reports-and-statistics-data-for-canadian-principal-field-crops/?id=1378743094676 (accessed on 26 September 2019). Anonymous. (1993). An introduction to fluorescence measurements with the plant efficiency analyzer. (PEA) Hansatech Instruments Ltd. England. Arcarde A., Anselin F., Faivre Rampant P. F., Lesage M. C., Paques L. E., and Prat D. (2000). Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theoretical and Applied Genetics, 100: 299-307. DOI: https://doi.org/10.1007/s001220050039. Auld D. L., Ditterline R. L., Murrayand G. A., and Swensen J. B. (1983). Screening peas for winter hardiness under field and laboratory conditions. Crop Science, 23: 85-88. DOI: https://doi.org/10.2135/cropsci1983.0011183X002300010024x. Belkhodja R., Morales F., Abadia A., Gomez-Aparisi J., and Abadia J. (1994). Chlorophyll flourescens as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology, 104: 667-673. DOI: 10.1104/pp.104.2.667. Bonato A. L. V., Galvo E. S., Geraldi I. O., and Arias C. A. A. (2006). Genetic variability among soybean (Glycine max L. Merrill) cultivars released in Brazil using AFLP markers. Genetics and Molecular Biology, 29: 692-704. DOI: 10.1590/S1415-47572006000400019. Bridger G. M., Falk D. E., Mckersie B. D., and Smith D. L. (1996). Crown freezing tolerance and field winter survival of winter cereals in eastern Canada. Crop Science, 36: 150-157. DOI: https://doi.org/10.2135/cropsci1996.0011183X003600010027x. Chabane k., Abdolla O., Sayed H., and Valkoun J. (2007). Assessment of EST-microsatellitess markers for discrimination and genetic diversity in bread and durum wheat landraces from Afghanistan. Genetic Resources of Crop, 54: 1073-1080. DOI: https://doi.org/10.1007/s10722-006-9193-2. Chen T. H. H., Uemura M., and Fujikawa S. (2006). Cold hardiness in plants. CABI Publishing, pp. 269. CRP-WHEAT. (2016). Wheat Agri-Food Systems Proposal 2017-2022. Research Program on Wheat, (CGIAR). Available online at: https://cgspace.cgiar.org/handle/10947/4421?show=full. Esfandiari E., Shokrpour M., and Alavi-Kia S. (2010). Effect of Mg deficiency on antioxidant enzymes activities and lipid peroxidation. Journal of Agricultural Science, 2(3): 131-136. DOI: 10.5539/jas.v2n3p131. Eshghizadeh H. R., and Ehsanzadeh P. (2009). Maize hybrids performance under differing irrigation regimes: I. chlorophyll fluorescence, growth and grain yield. Iranian Journal of Field Crop Science, 40(2): 135-144. (In Persian). Falconer D. S. and Mackay T. F. C. (1996). Introduction to quantitative genetic. 4th Edition, Addison Wesley Longman, Harlow, New York. Fowler D. B., Limin A. E., and Ritchie J. T. (1999). Low-temperature tolerance in cereals: model and genetic interpretation. Crop Science, 39: 626-633. Fracheboud Y. (2006). Using chlorophyll fluorescence to study photosynthesis. institute of plant sciences ETH, university at strass, CH-8092 zurich. Frederiks T. M., Christopher J. T., Sutherland M. W., and Borrell A. K. (2015). Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance. Journal of Experimental Botany, 66: 3487-3498. DOI: 10.1093/jxb/erv088. Groppa M. D., and Benavides M. P. (2008). Ployamines and abiotic stress: recent advances. Amino Acids, 34: 35-45. DOI: https://doi.org/10.1007/s00726-007-0501-8. Gupta P. K., and Varshney R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113: 163-185. DOI: https://doi.org/10.1023/A:1003910819967. Hassan M. A., Xiang C., Farooq M., Muhammad N., Yan Z., Hui X., Yuanyuan K., Bruno A. K., Lele Z., and Jincai L. (2021). Cold stress in wheat: plant acclimation responses and management strategies. Frontiers in Plant Science, 12: 676884. DOI: 10.3389/fpls.2021.676884. Ivanov L. A., Ronzhina D. A., and Yudin P. K. (2013). Changing the contents of chlorophylls and carotenoids in leaves of prairie plants along a latitudinal gradient in the southern Urals. Russians Journal of Plant Physiology, 60: 856-864. DOI: 10.1134/S1021443713050075. Jahanbakhsh-Godehkahriz S., Karimzadeh G., Rastgar-Jazii F., Mahfoozi S., and Hosseini-Salekdeh G. (2009). Influence of vernalization on some physiological characteristics and cold tolerance in two susceptible and tolerant cultivars of bread wheat. Electronic Journal of Crop Production, 2: 85-106. (In Persian). Karimi M., Golparvar A. R., and Bahari B. (2011). Evaluation of bread wheat varieties for chilling stress tolerance and their effective traits for higher grain yield. Research on Crops, 12: 633-639. Khan T. A., Fariduddin Q., and Yusuf M. (2017). Low-temperature stress: is phytohormones application a remedy?. Environmental Science and Pollution Research, 24: 21574-21590. DOI: 10.1007/s11356-017-9948-7. Koç E. (2020). Assessing climate change impacts on wheat production in Turkey and various adaptation strategies. In: Climate Change and Food Security with Emphasis on Wheat, Ozturk M., and Gul A. (Eds.), ELSEVIER, Academic Press, 43-54. DOI: 10.1016/B978-0-12-819527-7.00003-0. Landkhoest-klein R. M., Vermunt A., Weide R., Liharska T., and Zabel P. (1991). Isolation of molecular markers for tomato (L. esculenum) using random amplified polymorphic DNA (RAPD). Theoretical and Applied Genetics, 83: 108-114. DOI: https://doi.org/10.1007/BF00229232. Lefsrud M. G., Kopsell D. A., Kopsell D. E., and Curran‐Celentano J. (2006). Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiologia Plantarum, 127(4): 624-631. DOI: 10.1111/j.1399-3054.2006.00692.x. Li X., Cai J., Liu F., Dai T., Cao W., and Jiang D. (2014). Spring freeze effect on wheat yield is modulated by winter temperature fluctuations: evidence from meta-analysis and simulating experiment. Journal of Agronomy and Crop Science, 201: 288-300. DOI: 10.1111/jac.12115. Ling J., Zhang J., and Woog M. (1997). Can stomata closure caused by xylem ABB explain the inhibition of leaf photosynthesis under soil drying?. Photosynthesis Research, 51: 149-159. DOI: https://doi.org/10.1023/A:1005797410190. Mahfoozi S., Limin A. E., and Fowler D. B. (2001). Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Science, 41: 1006-1011. DOI: 10.2135/cropsci2001.4141006x. Mahfoozi S., Majidi E., Taeb M., and Taleii A. (1994). Methodology of evaluating of cold tolerant sources in wheat cultivars. M.Sc. Thesis, Azad Islamic University, Karaj, Iran. Maxwell K., and Johnson G. N. (2000). Chlorophyll fluorescence- a practical guide. Journal of Experimenta Botany, 51: 659-668. DOI: 10.1093/jxb/51.345.659. Malkoti M. J., Msheiri F., and Ghaibi M. N. (2004). Optimum level of nutrients in soil and some agricultural and horticultural crops, Water and Soil Research Institute, Technical Bulletin, No. 405. Meyer D. W., and Badaruddin M. (2001). Frost tolerance of ten seedling legume species at four growth stages. Crop Sciences, 41: 1838-1842. DOI: https://doi.org/10.2135/cropsci2001.1838. Mohammadi M., Mirfakhrai S. R., and Abbasi A. (2013). Genetic diversity in bread wheat (Triticum aestivum L.) as revealed by microsatellite markers and association analysis of physiological traits related to spring cold stress. New genetics, 9(3): 279-288. (In Persian). Mohsenzadeh S., Farhi Ashtiani S., Malbobi M. A., and Qanati F. (2003). Effects of drought and chlorocholine chloride on seedling and photosynthesis of two varieties of wheat (Triticum aestivum L.). Pajouhesh & Sazandegi, 60: 56-64. (In Persian). Murray L. E., Rowley N., Dawes I. W., Johnston G. C., and Singer R. A. (1998). A yeast glutamine tRNA signals nitrogen status for regulation of dimorphic growth and sporulation. Proceedings of the National Academy of Sciences of the United States of America, 95(15): 8619-24. Nakhaii badrabadi M. (2010). Association analysis of molecular markers and dry matter remobilization in barley (hordeum vulgare L.). Master’s thesis in plant breeding. Faculty of Agriculture, Mohaghegh Ardabili University. (In Persian). Netto A., Campostrini E., Oliveira J., and Bressan-Smith R. (2005). Plhotosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104: 199-209. Nowak H. B., Matraszek R., and Szymanska M. (2010). Selenium modifies the effect of short term chilling stress on cucumber plants. Biological Trace Element Research, 138: 307-315. Pearce S. R., Knox M., Ellis T. N. H., Flavell A. J., and Kumar A. (2000). Pea ty1-copia group retrotransposons: transitional activity and use as markers to study genetic diversity in pisum. Molecular and General Genetics, 263: 898-907. Rajcan I., and Swanton C. J. (2001). Understanding maize-weed competition: Resource competition, light quality and the whole plant. Field Crops Research, 71: 139-150. DOI: 10.1016/S0378-4290(01)00159-9. Rahmani M., Rahimi M., Abdolinasab M., and Maleki M. (2021). Evaluation of genetic diversity of different bread wheat (Triticum aestivum L.) varieties using molecular markers ISSR and RAPD. Journal of Cellular and Molecular Research (scientific), 34(2): 248-262. Rezaei N., Saeidi M., Shahryar S., Jalali-Honarmand S., and Ghobadi M. E. (2022). Some biochemical traits related to cold tolerance in different bread wheat cultivars with different growth types in Kermanshah region. Cereal Biotechnology and Biochemistry, 1(1): 66-86. DOI: 10.22126/cbb.2022.1953. Rinalducci S., Egidi M. G., Karimzadeh G., Jazii F. R., and Zolla L. (2011). Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis, 32: 1807-1818. DOI: 10.1002/elps.201000663. Ruelland E., and Zachowski A. (2010). How plants sense temperature. Environ. Journal of Experimental Botany, 69: 225-232. DOI: 10.1016/j.envexpbot.2010.05.011. Rustai M. (2009). Genetic study of powdery mildew tolerance in wheat based on morphophysiological characteristics and molecular markers. Doctoral thesis on plant breeding. Islamic Azad University, Science and Research Unit. Tehran. Sadeghzade-Ahari D. (2006). Evaluation for tolerance to drought stress in dry land promising durum wheat genotypes. Iranian Journal of Crop Science, 8(1): 30-45. (In Persian). Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., and Allard R. W. (1984). Ribosomal DNA spacer-length polymorphism in barley: mendelian inheritance, chromosomal location and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81(24): 8014-8. DOI: 10.1073/pnas.81.24.8014. Seiler G. J., and Stafford R. E. (1985). Factor analysis of component of yield in guar. Crop Science, 25: 905-908. DOI: https://doi.org/10.2135/cropsci1985.0011183X002500060003x. Sepehri M., Sofalian O., Asghari A., Firoozi B., and Ahmadpour F. (2014). Assessment of diversity of soybean (Glycin max L.) genotypes for cold tolerance using physiological traits and ISSR markers. Modern Genetics Journal, 9(4): 459-470. (In Persian). Sio-se mardeh A., Mohammadi K. H., Rouhi I., Agha Alikhani M., and Khossi Bidgoli A. (2009). Physiological response of different dry wheat genotypes to cold stress. Electronic Journal of Crop Production, 2(4): 93-112. (In Persian). Skinner D. Z., and Garland-Campbell K. A. (2008). The relationship of LT50 to prolonged freezing survival in winter wheat. Canadian Journal of Plant Science, 88(5): 885-889. DOI: 10.4141/CJPS08007. Theocharis A., Clément C., and Barka E. A. (2012). Physiological and molecular changes in plants grown at low temperatures. Planta, 235: 1091-1105. DOI: 10.1007/s00425-012-1641-y. Valluru R., Link J., and Claupein W. (2012). Consequences of early chilling stress in two Triticum species: plastic responses and adaptive significance. Plant Biology, 14: 641-651. DOI: 10.1111/j.1438-8677.2011.00540. Wu C. J., Cheng Z. Q., Huang X. Q., Yin S. H., Cao K. M., and Sun C. R. (2004). Genetic diversity among and within population of Oryza granulata from Younnan of China revealed by RAPD and ISSR markers. Implications for the endangered species. Plant Science, 167: 35-42. DOI: https://doi.org/10.1016/j.plantsci.2004.02.022. Wulff A., Sheppard L., and Leith I. (1994). Evaluation of electrolyte leakage, chlorophyll fluorescence and ultrastructural techniques for detecting effects of acid mist on frost hardiness of sitka spruce shoots. Environmental and Experimental Botany, 34: 261-273. DOI: https://doi.org/10.1016/0098-8472(94)90047-7. Yadav S. K. (2010). Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 30: 515-527. DOI: 10.1051/agro/2009050. Yamori W., Noguchi K., Hikosaka K., and Terashima I. (2009). Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Plant and Cell Physiology, 50: 203-215. DOI: 10.1093/pcp/pcn189. Yang X., Chen X., Ge Q., Li B., Tong Y., Zhang A., Li Z., Kuang T., and Lu C. (2006). Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: A comparision between a hybridization line and its parents grown under fileld condition. Plant Science, 171: 389-397. DOI: 10.1016/j.plantsci.2006.04.010. Zhang X. Y., Li C. W., Wang L. F., Wang H. M., You G. X., and Dong Y. S. (2002). An estimation of the minimum number of SSR alleles needed to reveal genetic relationships in wheat varieties. I. Information from large-scale planted varieties and cornerstone breeding parents in Chinese wheat improvement and production. Theoretical and Applied Genetics, 106: 112-117. DOI: 10.1007/s00122-002-1016-z. Zheng B., Chapman S. C., Christopher J. T., Frederiks T. M., and Chenu K. (2015). Frost trends and their estimated impact on yield in the Australian wheatbelt. Journal of Experimental Botany, 66: 3611-3623. DOI: 10.1093/jxb/erv163. | ||
آمار تعداد مشاهده مقاله: 245 تعداد دریافت فایل اصل مقاله: 162 |