تعداد نشریات | 19 |
تعداد شمارهها | 379 |
تعداد مقالات | 3,111 |
تعداد مشاهده مقاله | 4,215,982 |
تعداد دریافت فایل اصل مقاله | 2,824,659 |
Fundamentals, applications, and challenges of the 3K rice genomes project | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 5، دوره 10، شماره 2 - شماره پیاپی 20، دی 2021، صفحه 57-69 اصل مقاله (662.53 K) | ||
نوع مقاله: Review Paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.17775.1328 | ||
نویسندگان | ||
Mojtaba Kordrostami* 1؛ Ali Akbar Ghasemi-Soloklui1؛ Mehdi Rahimi2 | ||
1Nuclear Science and Technology Research Institute (NSTRI), Nuclear Agriculture Research School, Karaj, Iran. | ||
2Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. | ||
تاریخ دریافت: 17 شهریور 1401، تاریخ بازنگری: 27 فروردین 1402، تاریخ پذیرش: 09 اردیبهشت 1402 | ||
چکیده | ||
For more than half of the world’s population, rice (Oryza sativa L.) is the primary source of nutrition. Rice production must expand by at least 25 percent by 2030 to feed the world’s ever-increasing population. As climate change and arable land loss take a tremendous toll on the world’s food supply, genetic advancements in rice would be crucial for alleviating the yield gap. We must first obtain extensive information on the genetic diversity of the Oryza spp. gene pool, the association between diverse alleles and critical rice characteristics, and the systematic exploitation of the rich genetic diversity using approaches that employ expertise in rice breeding procedures. The vast genetic diversity of rice cannot be represented by a single genome. To produce variants that are more tolerant to adverse weather conditions, a multi-national rice genome sequencing project was launched on May 28, 2014. Genes associated with drought tolerance, disease resistance, and pest resistance in rice could be identified using the above mentioned genetic information. Using diverse germplasm resources and high-throughput genome sequencing projects, rice genomics has made great progress toward applying basic research advances to understanding agronomic traits. It is important to remember that many important genes are missing from the previous sequencing projects, and many useful genes are present in native and traditional populations that cannot be retrieved without gene sequencing. | ||
کلیدواژهها | ||
3K rice genomes project؛ Genetic structure؛ Genetic variation؛ Structural variants | ||
عنوان مقاله [English] | ||
مبانی، کاربردها و چالش های پیش روی پروژه 3000 ژنومی برنج | ||
نویسندگان [English] | ||
مجتبی کردرستمی1؛ علی اکبر قاسمی سلوکلوئی1؛ مهدی رحیمی2 | ||
1پژوهشکده علوم و فناوری هسته ای (NSTRI)، دانشکده تحقیقات کشاورزی هسته ای، کرج، ایران. | ||
2گروه بیوتکنولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران. | ||
چکیده [English] | ||
برنج (Oryza sativa L.) منبع اصلی تغذیه است. از آنجایی که تغییرات آب و هوایی و از دست دادن زمین های قابل کشت تلفات زیادی بر عرضه غذای جهان وارد می کند، پیشرفت های ژنتیکی در برنج برای کاهش شکاف عملکرد بسیار مهم است. ابتدا باید اطلاعات گسترده ای در مورد تنوع ژنتیکی Oryza spp. به دست آوریم. استخر ژنی، ارتباط بین آللهای متنوع ویژگیهای حیاتی برنج، و بهرهبرداری سیستماتیک از تنوع ژنتیکی غنی با استفاده از رویکردهایی که از تخصص در روشهای اصلاح برنج استفاده میکنند. تنوع ژنتیکی گسترده برنج را نمی توان با یک ژنوم نشان داد. برای تولید واریانت هایی که نسبت به شرایط نامطلوب آب و هوایی متحمل تر هستند، یک پروژه توالی یابی ژنوم برنج چند ملیتی در 28 می 2014 راه اندازی شد. ژن های مرتبط با تحمل به خشکی، مقاومت به بیماری و مقاومت به آفات در برنج را می توان با استفاده از اطلاعات ژنتیکی بالا شناسایی کرد. ژنومیک برنج با استفاده از منابع متنوع ژرم پلاسم و پروژههای توالییابی ژنوم با کارایی بالا، پیشرفت زیادی در جهت بکارگیری پیشرفتهای تحقیقاتی پایه برای درک صفات زراعی داشته است. انتظار میرود که توالی ژنومی گیاه برنج در نهایت آشکار شود و این پروژه کمکی ضروری برای درک ژنومیک سایر صفات مزرعه ای شود. لازم به یادآوری است که بسیاری از ژنهای مهم در پروژههای توالییابی قبلی وجود نداشته اند و بسیاری از ژنهای مفید در جمعیتهای بومی و سنتی وجود دارند که بدون تعیین توالی ژن قابل بازیابی نیستند. | ||
کلیدواژهها [English] | ||
تنوع ژنتیکی, ساختار ژنتیکی, پروژه ژنوم برنج 3K, واریانت ساختاری | ||
مراجع | ||
3000 Rice Genomes Project. (2014). The 3,000 rice genomes project. GigaScience, 3(1): 2047-2217X-2043-2047. DOI: 10.1186/2047-217X-3-7. Adlak T., Tiwari S., Tripathi M., Gupta N., Sahu V. K., Bhawar P., and Kandalkar V. (2019). Biotechnology: an advanced tool for crop improvement. Current Journal of Applied Science and Technology, 33(1): 1-11. DOI: 10.9734/cjast/2019/v33i130081. Ahmar S., Gill R. A., Jung K.-H., Faheem A., Qasim M. U., Mubeen M., and Zhou W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences, 21(7): 2590. DOI: 10.3390/ijms21072590. Anilkumar C., Sah R. P., Muhammed A. T., Sunitha N., Behera S., Marndi B., Sharma T. R., and Singh A. K. (2022). Genomic selection in rice: current status and future prospects. In book: Genomic Selection in Plants A Guide for Breeders, 68-82. DOI: 10.1201/9781003214991-4. Anwar K., Joshi R., Morales A., Das G., Yin X., Anten N. P., Raghuvanshi S., Bahuguna R. N., Singh M. P., Singh R. K., Zanten M., Sasidharan R., Singla-Pareek S. L., and Pareek A. (2022). Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food and Energy Security, 11(2): e334. DOI: 10.1002/fes3.334. Bommisetty R., Chakravartty N., Bodanapu R., Naik J. B., Panda S. K., Lekkala S. P., Lalam K., Thomas G., Mallikarjuna S., Reddy G. E., Murty G., Bollineni S. N., Issa K., Srividhya A., Srilakshmi C., Hariprasadreddy K., Rameshbabu P., Sudhakar P., Gupta S., Lachagari R. V. B., and Vemireddy L. (2020). Discovery of genomic regions and candidate genes for grain weight employing next generation sequencing based QTL-seq approach in rice (Oryza sativa L.). Molecular Biology Reports, 47(11): 8615-8627. DOI: 10.1007/s11033-020-05904-7. Edzesi W. M., Dang X., Liang L., Liu E., Zaid I. U., and Hong D. (2016). Genetic diversity and elite allele mining for grain traits in rice (Oryza sativa L.) by association mapping. Frontiers in Plant Science, 7: 787. DOI: 10.3389/fpls.2016.00787. Escaramís G., Docampo E., and Rabionet R. (2015). A decade of structural variants: description, history and methods to detect structural variation. Briefings in Functional Genomics, 14(5): 305-314. DOI: 10.1093/bfgp/elv014. Francia E., Pecchioni N., Policriti A., and Scalabrin S. (2015). CNV and structural variation in plants: prospects of NGS approaches. In: Sablok G., Kumar S., Ueno S., Kuo J., and Varotto C. (Eds), Advances in the understanding of biological sciences using next generation sequencing (NGS) approaches. Springer, Cham, 211-232. DOI: https://doi.org/10.1007/978-3-319-17157-9_13. Fuentes R. R., Chebotarov D., Duitama J., Smith S., De la Hoz J. F., Mohiyuddin M., Wing R. A., McNally K. L., Tatarinova T., and Grigoriev A. (2019). Structural variants in 3000 rice genomes. Genome Research, 29(5): 870-880. DOI: 10.1101/gr.241240.118. Futschik A., and Schlötterer C. (2010). The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics, 186(1): 207-218. DOI: 10.1534/genetics.110.114397. Gouda G., Gupta M. K., Donde R., Kumar J., Parida M., Mohapatra T., Dash S. K., Pradhan S. K., and Behera L. (2020). Characterization of haplotypes and single nucleotide polymorphisms associated with Gn1a for high grain number formation in rice plant. Genomics, 112(3): 2647-2657. DOI: 10.1016/j.ygeno.2020.02.016. Gu H., Liang S., and Zhao J. (2022). Novel sequencing and genomic technologies revolutionized rice genomic study and breeding. Agronomy, 12(1): 218. DOI: 10.3390/agronomy12010218. Gupta M. K., Gouda G., Donde R., Selvaraj S., Dash G. K., Nambi R., Ponnana M., Pati P., Rathore S. K., Ramakrishna V., and Behera L. (2021). 3000 genome project: a brief insight. In book: Bioinformatics in Rice Research: Theories and Techniques, 89-100. DOI: 10.1007/978-981-16-3993-7_5. Gutaker R. M., Groen S. C., Bellis E. S., Choi J. Y., Pires I. S., Bocinsky R. K., Slayton E. R., Wilkins O., Castillo C. C., and Negrão S. (2020). Genomic history and ecology of the geographic spread of rice. Nature Plants, 6(5): 492-502. DOI: 10.1038/s41477-020-0659-6. Hasan N., Choudhary S., Naaz N., Sharma N., and Laskar R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 19(1): 1-26. DOI: 10.1186/s43141-021-00231-1. Islam S. M. F., and Karim Z. (2019). World’s demand for food and water: The consequences of climate change. In book: Desalination-challenges and opportunities, 1-27. DOI: 10.5772/intechopen.85919. Jia L., Xie L., Lao S., Zhu Q.-H., and Fan L. (2021). Rice bioinformatics in the genomic era: Status and perspectives. The Crop Journal, 9(3): 609-621. DOI: 10.1016/j.cj.2021.03.003. Junliang Z. V., and Dilin L. (2022). Rice genetics, genomics and breeding revolutionized by next-generation sequencing. Next-Generation Sequencing and Agriculture, 12: 39-58. Katara J. L., Parameswaran C., Devanna B., Verma R. L., Anilkumar C., Patra B., and Samantaray S. (2021). Genomics assisted breeding: The need and current perspective for rice improvement in India. ORYZA-An International Journal of Rice, 58(1): 61-68. DOI: 10.35709/ory.2021.58.spl.1. Kaur B., Sandhu K. S., Kamal R., Kaur K., Singh J., Röder M. S., and Muqaddasi Q. H. (2021). Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: Applications, challenges, and prospects. Plants: 10(10): 1989. DOI: https://doi.org/10.3390/plants10101989. Kebriyaee D., Kordrostami M., Rezadoost M. H., and Lahiji H. S. (2012). QTL analysis of agronomic traits in rice using SSR and AFLP markers. Notulae Scientia Biologicae, 4(2): 116-123. DOI: 10.15835/nsb427501. Konishi S., Izawa T., Lin S. Y., Ebana K., Fukuta Y., Sasaki T., and Yano M. (2006). An SNP caused loss of seed shattering during rice domestication. Science, 312(5778): 1392-1396. DOI: 10.1126/science.1126410. Kordrostami M., and Mafakheri M. (2021). Consequences of Water Stress and Salinity on Plants/Crops: Physiobiochemical and Molecular Mitigation Approaches. In: Handbook of Plant and Crop Physiology, CRC Press, 789-814. Kordrostami M., Mafakheri M., and Chaleshtori M. H. (2021). Characteristics of grain quality in rice: Physiological and molecular aspects. In: Handbook of Plant and Crop Physiology, CRC Press, 147-157. Kordrostami M., and Rabiei B. (2019). Major databases to study genes expression in plants (A case study: Rice). Cereal Research, 9(1): 83-101. DOI: 10.22124/c.2019.13568.1499. Kordrostami M., Rabiei B., and Kumleh H. H. (2017). Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress. Environmental Science and Pollution Research, 24(8): 7184-7196. DOI: 10.1007/s11356-017-8411-0. Kordrostami M., and Rahimi M. (2015). Molecular markers in plants: concepts and applications. Genetics in the 3rd Millennium, 13: 4024-4031. Kumar J., Pratap A., and Kumar S. (2015). Plant phenomics: an overview. In book: Phenomics in Crop Plants: Trends, Options And Limitations, 1-10. DOI: 10.1007/978-81-322-2226-2_1. Kumar P., Choudhary M., Jat B., Kumar B., Singh V., Kumar V., Singla D., and Rakshit S. (2021). Skim sequencing: an advanced NGS technology for crop improvement. Journal of Genetics, 100: 1-10. DOI: 10.1007/s12041-021-01285-3. Kumawat S., Raturi G., Dhiman P., Sudhakarn S., Rajora N., Thakral V., Yadav H., Padalkar G., Sharma Y., and Rachappanavar V. (2022). Opportunity and challenges for whole‐genome resequencing‐based genotyping in plants. Genotyping by Sequencing for Crop Improvement, 38-51. DOI: https://doi.org/10.1002/9781119745686.ch3. Lenaerts B., Collard B. C., and Demont M. (2019). Improving global food security through accelerated plant breeding. Plant Science, 287: 110207. DOI: 10.1016/j.plantsci.2019.110207. Li J.-Y., Wang J., and Zeigler R. S. (2014). The 3,000 rice genomes project: new opportunities and challenges for future rice research. GigaScience, 3(1): 2047-2217X-2043-2048. Li Z.-K., and Zhang F. (2013). Rice breeding in the post-genomics era: from concept to practice. Current Opinion in Plant Biology, 16(2): 261-269. DOI: 10.1016/j.pbi.2013.03.008. Lu J., Wang C., Zeng D., Li J., Shi X., Shi Y., and Zhou Y. (2021). Genome-wide association study dissects resistance loci against bacterial blight in a diverse rice panel from the 3000 rice genomes project. Rice, 14(1): 1-13. DOI: 10.1186/s12284-021-00462-3. Mafakheri M., and Kordrostami M. (2020). Role of Molecular Tools and Biotechnology in Climate-Resilient Agriculture. In Hasanuzzaman M. (Ed.), Plant Ecophysiology And Adaptation Under Climate Change: Mechanisms And Perspectives II: Mechanisms Of Adaptation And Stress Amelioration, Springer Singapore, 491-529. DOI: https://doi.org/10.1007/978-981-15-2172-0_17. McCouch S. R., McNally K. L., Wang W., and Sackville Hamilton R. (2012). Genomics of gene banks: a case study in rice. American Journal of Botany, 99(2): 407-423. DOI: 10.3732/ajb.1100385. McNally K. L., Jackson M., Ford-Lloy B., and Parry M. (2014). Exploring ‘omics’ of genetic resources to mitigate the effects of climate change. Plant Genetic Resources and Climate Change. DOI: 10.1079/9781780641973.0166. Mills R. E., Walter K., Stewart C., Handsaker R. E., Chen K., Alkan C., Abyzov A., Yoon S. C., Ye K., and Cheetham R. K. (2011). Mapping copy number variation by population-scale genome sequencing. Nature, 470(7332): 59-65. DOI: 10.1038/nature09708. Mullaney J. M., Mills R. E., Pittard W. S., and Devine S. E. (2010). Small insertions and deletions (INDELs) in human genomes. Human Molecular Genetics, 19(R2): R131-R136. DOI: 10.1093/hmg/ddq400. Nie L., and Peng S. (2017). Rice production in China. In: Rice production worldwide, Springer, 33-52. Olsen K. M. (2022). The rice pangenome branches out. Cell Research, 32(10): 867-868. DOI: 10.1038/s41422-022-00699-7. Palanisami K., Kakumanu K. R., Nagothu U. S., and Ranganathan C. (2019). Climate Change and future rice production in India. India Studies in Business and Economics. ISBN: 978-981-13-8362-5. Paul A. (2020). Sequencing the rice genome: gateway to agricultural development. Rice Research for Quality Improvement: Genomics and Genetic Engineering, Volume 1, Breeding Techniques and Abiotic Stress Tolerance, 109-157. Pervez M. T., Abbas S. H., Moustafa M. F., Aslam N., and Shah S. S. M. (2022). A comprehensive review of performance of next-generation sequencing platforms. BioMed Research International, 2022(107): 1-12. DOI: 10.1155/2022/3457806. Purugganan M. D., and Jackson S. A. (2021). Advancing crop genomics from lab to field. Nature Genetics, 53(5): 595-601. DOI: 10.1038/s41588-021-00866-3. Rabiei B., Kordrostami M., Sabouri A., and Sabouri H. (2015). Identification of QTLs for yield related traits in Indica type rice using SSR and AFLP markers. Agriculturae Conspectus Scientificus, 80(2): 91-99. Ram S. G., Thiruvengadam V., and Vinod K. K. (2007). Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. Journal of Applied Genetics, 48(4): 337-345. DOI: 10.1007/BF03195230. Ramadas V. S. (2018). Consumption pattern of traditional and non-traditional rice consumers and their health status. Asian Journal of Multidimensional Research (AJMR), 7(1): 67-72. Rana N., Rahim M. S., Kaur G., Bansal R., Kumawat S., Roy J., Deshmukh R., Sonah H., and Sharma T. R. (2020). Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Critical Reviews in Food Science and Nutrition, 60(19): 3304-3320. DOI: 10.1080/10408398.2019.1685454. Rivero R. M., Mittler R., Blumwald E., and Zandalinas S. I. (2022). Developing climate‐resilient crops: improving plant tolerance to stress combination. The Plant Journal, 109(2): 373-389. DOI: 10.1111/tpj.15483. Roitsch T., Cabrera-Bosquet L., Fournier A., Ghamkhar K., Jiménez-Berni J., Pinto F., and Ober E. S. (2019). New sensors and data-driven approaches—A path to next generation phenomics. Plant Science, 282: 2-10. DOI: 10.1016/j.plantsci.2019.01.011. Saad N. S. M., Neik T. X., Thomas W. J., Amas J. C., Cantila A. Y., Craig R. J., Edwards D., and Batley J. (2022). Advancing designer crops for climate resilience through an integrated genomics approach. Current Opinion in Plant Biology, 67: 102220. Sakhale S., Yadav S., Clark L., Lipka A., Kumar A., and Sacks E. (2023). Genome-wide association analysis for emergence of deeply sown rice (Oryza sativa) reveals novel aus-specific phytohormone candidate genes that conferred adaption to dry-direct seeding in the field. Authorea Preprints. DOI: 10.22541/essoar.167407907.78496270/v1. Salgotra R. K., and Chauhan B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1): 174. DOI: 10.3390/genes14010174. Seck P. A., Diagne A., Mohanty S., and Wopereis M. (2012). Crops that feed the world 7: Rice. Food Security, 4(1): 7-24. DOI: https://doi.org/10.1007/s12571-012-0168-1. Shahzad A., Ullah S., Dar A. A., Sardar M. F., Mehmood T., Tufail M. A., Shakoor A., and Haris M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28: 14211-14232. Song S., Tian D., Zhang Z., Hu S., and Yu J. (2018). Rice genomics: over the past two decades and into the future. Genomics, Proteomics & Bioinformatics, 16(6): 397-404. DOI: 10.1016/j.gpb.2019.01.001. Sun C., Hu Z., Zheng T., Lu K., Zhao Y., Wang W., Shi J., Wang C., Lu J., Zhang D., Li Z., and Wei Ch. (2017). RPAN: rice pan-genome browser for∼ 3000 rice genomes. Nucleic Acids Research, 45(2): 597-605. DOI: 10.1093/nar/gkw958. Sweeney M. T., Thomson M., Pfeil B. E., and McCouch S. (2006). Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell, 18(2): 283-294. DOI: 10.1105/tpc.105.038430. Thangadurai D., Kordrostami M., Islam S., Sangeetha J., Al-Tawaha A. R. M. S., and Jabeen S. (2020). Genetic Enhancement of Nutritional Traits in Rice Grains Through Marker-Assisted Selection and Quantitative Trait Loci. In: Rice Research for Quality Improvement: Genomics and Genetic Engineering, Springer, 493-507. Tu Anh T. T., Khanh T. D., Dat T. D., and Xuan T. D. (2018). Identification of phenotypic variation and genetic diversity in rice (Oryza sativa L.) mutants. Agriculture, 8(2): 30. Wang B., Kumar V., Olson A., and Ware D. (2019). Reviving the transcriptome studies: an insight into the emergence of single-molecule transcriptome sequencing. Frontiers in Genetics, 10: 384. DOI: 10.3389/fgene.2019.00384. Wang W., Mauleon R., Hu Z., Chebotarov D., Tai S., Wu Z., Li M., Zheng T., Fuentes R. R., and Zhang F. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557(7703): 43-49. DOI: 10.1038/s41586-018-0063-9. Wang Z. Y., Zheng F. Q., Shen G. Z., Gao J. P., Snustad D. P., Li M. G., Zhang J. L., and Hong M. M. (1995). The amylose content in rice endosperm is related to the post‐transcriptional regulation of the waxy gene. The Plant Journal, 7(4): 613-622. DOI: 10.1046/j.1365-313X.1995.7040613.x. Wei X., and Huang X. (2019). Origin, taxonomy, and phylogenetics of rice. In: Rice, Elsevier, 1-29. DOI: https://doi.org/10.1016/B978-0-12-811508-4.00001-0. Wing R. A., Purugganan M. D., and Zhang Q. (2018). The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics, 19(8): 505-517. DOI: https://doi.org/10.1038/s41576-018-0024-z. Würschum T., Boeven P. H., Langer S. M., Longin C. F. H., Leiser W. L. (2015). Multiply to conquer: copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genetics, 16(1): 1-8. DOI: 10.1186/s12863-015-0258-0. Yu H., Xie W., Li J., Zhou F., and Zhang Q. (2014). A whole‐genome SNP array (RICE 6 K) for genomic breeding in rice. Plant Biotechnology Journal, 12(1): 28-37. DOI: 10.1111/pbi.12113. Yu S., Xu W., Vijayakumar C., Ali J., Fu B., Xu J., Jiang Y., Marghirang R., Domingo J., and Aquino C. (2003). Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theoretical and Applied Genetics, 108(1): 131-140. DOI: 10.1007/s00122-003-1400-3. Żmieńko A., Samelak A., Kozłowski P., and Figlerowicz M. (2014). Copy number polymorphism in plant genomes. Theoretical and Applied Genetics, 127(1): 1-18. DOI: 10.1007/s00122-013-2177-7. | ||
آمار تعداد مشاهده مقاله: 269 تعداد دریافت فایل اصل مقاله: 220 |