تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,433 |
تعداد دریافت فایل اصل مقاله | 2,845,876 |
Subcloning and expression of blf1 gene isolated from Burkholderia pseudomallei in hairy roots of tobacco plants | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 10، شماره 2 - شماره پیاپی 20، دی 2021، صفحه 71-81 اصل مقاله (990.87 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.17386.1317 | ||
نویسندگان | ||
Zahra Moshiri1؛ Raheem Haddad* 1؛ Hossein Honari2 | ||
1Department of Biotechnology, Faculty of Agriculture and Natural Resource, Imam Khomeini International University, Qazvin, Iran. | ||
2Biology Science and Technology Center, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran. | ||
تاریخ دریافت: 24 خرداد 1401، تاریخ بازنگری: 28 اردیبهشت 1402، تاریخ پذیرش: 28 اردیبهشت 1402 | ||
چکیده | ||
Melioidosis is a common disease between human and animals caused by Burkholderia pseudomallei. There is currently no effective vaccine for it. The aim of this research was to express blf1 gene in tobacco plants. By transforming the pBI121 vector into Agrobacterium tumefaciens, the blf1 gene was transferred to the tobacco plants and the primary transgenic plants were obtained. The explants obtained from the transgenic plants were used to induce hairy roots. The presence of the blf1 gene was investigated in the obtained hairy roots by PCR and Western blot analysis. The titer of antigen production was measured by ELISA technique. The insertion of the blf1 gene construct into pBI121 vector containing the ctxB gene was confirmed by PCR. The tobacco explants inoculated with A. tumefaciens were cultured on the MS medium containing benzyl-aminopurine (BAP) and 1-naphthalene acetic acid (1 -NAA). After callus formation and seedling regeneration, the seedlings with active meristems were transferred onto the hormone-free medium for rooting and transgenic tobacco plants containing the blf1 gene were produced. By preparing an explant of transgenic plants by A. rhizogenes, inoculum and hairy roots were obtained. In hairy roots, the presence of blf1 gene was confirmed using PCR and its expression was confirmed by Western blotting. By using the ELISA technique, the titer of BLF1 antigen production in the total soluble protein of hairy roots was determined to be 0.56%. | ||
کلیدواژهها | ||
Gene transfer؛ Tobacco؛ Melioidosis؛ Cloning | ||
عنوان مقاله [English] | ||
زیرهمسانه سازی و بیان ژن blf1 بورخولدریا سودومالئی در ریشه های مویین گیاه تنباکو | ||
نویسندگان [English] | ||
زهرا مشیری1؛ رحیم حداد1؛ حسین هنری2 | ||
1گروه بیوتکنولوژی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران. | ||
2مرکز علوم و فناوری زیست شناسی، دانشکده علوم پایه، دانشگاه امام حسین، تهران، ایران. | ||
چکیده [English] | ||
Melioidosis یک بیماری مشترک بین انسان و حیوان است که توسط Burkholderia Pseudomallei ایجاد می شود. در حال حاضر هیچ واکسن موثری برای آن وجود ندارد. هدف از این تحقیق بیان ژن blf1 در گیاه تنباکو می باشد. با انتقال وکتور pBI121 به Agrobacterium tumefaciens، ژن blf1 به گیاه تنباکو منتقل شد و گیاه تراریخته کامل بدست آمد. از ریزنمونه گیاه تراریخته توسط Agrobacterium rhizogenes برای تهیه ریشه های مویین استفاده شد. وجود ژن blf1 در ریشه های مویین به دست آمده با روش PCR و وسترن بلات بررسی شد. میزان تولید آنتی ژن با روش الایزا اندازه گیری شد. نتایج آزمایش ساخت سازه ژن با درج blf1 در وکتور pBI121 حاوی ژن ctxB با استفاده از پرایمرهای عمومی با تکنیک PCR تایید شد. ریزنمونه تنباکو پس از تلقیح با Agrobacterium tumefaciens، روی محیط کشت MS حاوی هورمونهای بنزیل آمینوپورین (BAP) و 1-نفتالین استیک اسید (1-NAA) قرار داده شد. پس از تشکیل کالوس و باززایی گیاهچه، نهال هایی با مریستم فعال جهت ریشه زایی به محیط بدون هورمون منتقل و بوته های تنباکوی تراریخته با ژن blf1 تولید و از طریق تست PCRصحت انتقال ژن تایید شد. با تهیه ریزنمونه ای از گیاهان تراریخته توسط آگروباکتریوم رایزوژنز، تلقیح و ریشه های مویین به دست آمد. در ریشه های مویین، ژن blf1 با استفاده از PCR و بیان آن با تکنیک وسترن بلات تایید شد. با استفاده از تکنیک الایزا، تولید آنتی ژن نوترکیب BLF1 در ریشه های مویین، 0.56 درصد پروتئین محلول کل تعیین گردید. | ||
کلیدواژهها [English] | ||
انتقال ژن, توتون, میلوئیدوزیس, همسانه سازی | ||
مراجع | ||
Ahmed B., Jailani A., Lee J.-H., and Lee J. (2022). Effect of halogenated indoles on biofilm formation, virulence, and root surface colonization by Agrobacterium tumefaciens. Chemosphere, 293: 133603. DOI: 10.1016/j.chemosphere.2022.133603. Bagheri K., Ghazvini M., and Hosseini S. (2015). Expression of recombinant protein in tobacco seeds. Modern Genetics Journal, 9(439): 493-500. (In Persian). Bazyari A. F., and Salmaniyan A. H. (2016). Creation of transgenic hairy roots in order to express the recombinant protein containing adhesive parts of three LSC bacterial toxins. M.Sc. Thesis, National Institute of Genetic Engineering and Biotechnology, Agricultural Biotechnology Research Institute, IR of Iran. (In Persian). Beigmohammadi M., Sharafi A., and Jafari S. (2019). An optimized protocol for Agrobacterium rhizogenes-mediated genetic transformation of Citrullus colocynthis. Journal of Applied Biotechnology Reports, 6: 113-117. DOI: 10.29252/JABR.06.03.06. Birnie E., Virk H. S., Savelkoel J., Spijker R., Bertherat E., Dance D. A., Limmathurotsakul D., Devleesschauwer B., Haagsma J. A., and Wiersinga W. J. (2019). Global burden of melioidosis in 2015: a systematic review and data synthesis. The Lancet Infectious Diseases, 19(8): 892-902. DOI: 10.1016/S1473-3099(19)30157-4. Biryukov S. S., Cote C. K., Klimko C. P., Dankmeyer J. L., Rill N. O., Shoe J. L., Hunter M., Shamsuddin Z., Velez I., Hedrick Z. M., Rosario-Acevedo R., Talyansky Y., Schmidt L. K., Orne C. E., Fetterer D. P., Burtnick M. N., Brett P. J., Welkos S. L., and DeShazercorresponding D. (2022). Evaluation of two different vaccine platforms for immunization against melioidosis and glanders. Frontiers in Microbiology, 13: 965518. DOI: 10.3389/fmicb.2022.965518. Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3. Burtnick M. N., Heiss C., Roberts R. A., Schweizer H. P., Azadi P., and Brett P. J. (2012). Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders. Frontiers in Cellular and Infection Microbiology, 2: 108. DOI: 10.3389/fcimb.2012.00108. Chaowagul W., White N. J., Dance D. A., Wattanagoon Y., Naigowit P., Davis T. M., Looareesuwan S., and Pitakwatchara N. (1989). Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. Journal of Infectious Diseases, 159: 890-899. DOI: 10.1093/infdis/159.5.890. Clarke J. D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols, 2009(3): pdb.prot5177. DOI: 10.1101/pdb.prot5177. Cruz-Migoni A., Hautbergue G. M., Artymiuk P. J., Baker P. J., Bokori-Brown M., Chang C.-T., Dickman M. J., Essex-Lopresti A., Harding S. V., and Mahadi N. M. (2011). A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science, 334: 821-824. DOI: 10.1126/science.1211915. Dehghani B., Mossavi A., Hassannia S., Hatef A., Sharafi A., and Eftekharian M. (2018). Expression of recombinant human bone morphogenetic protein 2 (rhBMP2) in tobacco transgenic hairy roots. Agricultural Biotechnology Journal, 10: 21-34. DOI: 10.22103/JAB.2018.2065. (In Persian). Farzaneh A., Adel Y., Ali N., and Younes G. (2013). Determine effective concentrations of β-lactam antibiotics against three strains of Agrobacterium tumefaciens and phytotoxicity on Tomato and Tobacco. International Journal of Agronomy and Plant Production, 4(11): 2919-2925. Froger A., and Hall J. E. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments (JoVE). DOI: 10.3791/253. Hadpanus P., Permsirivisarn P., Roytrakul S., and Tungpradabkul S. (2019). Biomarker discovery in the biofilm-forming process of Burkholderia pseudomallei by mass-spectrometry. Journal of Microbiological Methods, 159: 26-33. DOI: https://doi.org/10.1016/j.mimet.2019.02.011. Herrera-Estrella L., Simpson J., and Martínez-Trujillo M. (2005). Transgenic plants: an historical perspective. Transgenic Plants: Methods and Protocols, 286: 3-32. DOI: 10.1385/1-59259-827-7:003. Hinjoy S., Hantrakun V., Kongyu S., Kaewrakmuk J., Wangrangsimakul T., Jitsuronk S., Saengchun W., Bhengsri S., Akarachotpong T., Thamthitiwat S., Sangwichian O., Anunnatsiri S., Sermswan R. W., Lertmemongkolchai G., Tharinjaroen Ch. S., Preechasuth K., Udpaun R., Chuensombut P., Waranyasirikul N., Anudit Ch., Narenpitak S., Jutrakul Y., Teparrukkul P., Teerawattanasook N., Thanvisej K., Suphan A., Sukbut P., Ploddi K., Sirichotirat P., Chiewchanyon B., Rukseree K., Hongsuwan M., Wongsuwan G., Sunthornsut P., Wuthiekanun V., Sachaphimukh S., Wannapinij P., Chierakul W., Chewapreecha C., Thaipadungpanit J., Chantratita N., Korbsrisate S., Taunyok A., Dunachie S., Palittapongarnpim P., Sirisinha S., Kitphati R., Iamsirithaworn S., Chaowagul W., Chetchotisak P., Whistler T., Wongratanacheewin S., and Limmathurotsakul D. (2018). Melioidosis in Thailand: present and future. Tropical Medicine and Infectious Disease, 3: 38-38. DOI: 10.3390/tropicalmed3020038. Hirano S. (2012). Western blot analysis. In: Reineke J. (Ed.), Nanotoxicity: methods and protocols. Methods in Molecular Biology, 87-97. DOI:10.1007/978-1-62703-002-1. Jia S., Huang X., Li H., Zheng D., Wang L., Qiao X., Jiang Y., Cui W., Tang L., Li Y., and Xu Y. (2020). Immunogenicity evaluation of recombinant Lactobacillus casei W56 expressing bovine viral diarrhea virus E2 protein in conjunction with cholera toxin B subunit as an adjuvant. Microbial Cell Factories, 21(1): 209. DOI: 10.1186/s12934-022-01928-9. Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685. DOI: https://doi.org/10.1038/227680a0. Lee Y. H., Chen Y., Ouyang X., and Gan Y. H. (2010). Identification of tomato plant as a novel host model for Burkholderia pseudomallei. BMC Microbiology, 10: 28. DOI: 10.1186/1471-2180-10-28. Limmathurotsakul D., Golding N., Dance D. A., Messina J. P., Pigott D. M., Moyes C. L., Rolim D. B., Bertherat E., Day N. P., Peacock S. J., and Hay S. I. (2016). Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature Microbiology, 1: 15008. DOI: https://doi.org/10.1038/nmicrobiol.2015.8. Md Setamam N., Jaafar Sidik N., Abdul Rahman Z., and Che Mohd Zain C. R. (2014). Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants. BMC Research Notes, 7: 414. DOI: 10.1186/1756-0500-7-414. Mohammadi A., Niazi A., Aram F., Hassani F., and Ghasemi Y. (2020). Transformation of the L-asparaginase II gene to potato hairy roots for production of recombinant protein. Journal of Crop Science and Biotechnology, 23: 81-88. DOI: https://doi.org/10.1007/s12892-018-0030-0. Mohapatra P. R., and Mishra B. (2022). Burden of melioidosis in India and South Asia: challenges and ways forward. The Lancet Regional Health-Southeast Asia, 2: 100004. DOI: https://doi.org/10.1016/j.lansea.2022.03.004. Moshiri Z., Haddad R., and Honari H. (2021). Bioinformatic design and construction of a chimeric gene comprising the stxB, ctxB and blf1 genes. Journal of Neyshabur University of Medical Sciences, 8(4): 73-87. (In Persian). Ngauy V., Lemeshev Y., Sadkowski L., and Crawford G. (2005). Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. Journal of Clinical Microbiology, 43: 970-972. DOI: 10.1128/JCM.43.2.970-972.2005. Polshettiwar Satish A., Swarupa K., Gautam V., Purva C., and Aarti S. (2023). A systematic review on edible vaccines. Research Journal of Biotechnology, 18(1): 127-134. DOI: 10.25303/1801rjbt1270134. Qin S., Liu Y., Yan J., Lin S., Zhang W., and Wang B. (2022). An optimized tobacco hairy root induction system for functional analysis of nicotine biosynthesis-related genes. Agronomy, 12(2): 348. DOI: 10.3390/agronomy12020348. Saeed T., Shahzad A., and Yadav V. (2022). The production of high-value secondary metabolites through hairy root transformation in the presence of brassinosteroids. In Book: Brassinosteroids Signalling, Springer, 239-257. DOI: https://doi.org/10.1007/978-981-16-5743-6_14. Schmidt L. K. (2021). Identification and characterization of novel melioidosis vaccine candidates. Ph.D Dissertation, University of Nevada, Reno. Sedmak J. J., and Grossberg S. E. (1977). A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Analytical Biochemistry, 79: 544-552. DOI: https://doi.org/10.1016/0003-2697(77)90428-6. Skarjinskaia M., Ruby K., Araujo A., Taylor K., Gopalasamy-Raju V., Musiychuk K., Chichester J. A., Palmer G. A. de la Rosa P., Mett V., Ugulava N., Streatfield S. J., and Yusibov V. (2013). Hairy roots as a vaccine production and delivery system. In: Doran P. (Eds), Biotechnology of hairy root systems. Advances in Biochemical Engineering/Biotechnology, Springer, Berlin, Heidelberg, 134: 115-134. DOI: https://doi.org/10.1007/10_2013_184. Stanton A., and Fletcher W. (1921). Melioidosis, a new disease of the tropics. Far Eastern Association of Tropical Medicine: Transactions of the Fourth Congress. Batavia, Dutch East Indies: Javasche Boekhandel en Drukkerij, 2: 196-198. Sudo H., Yamakawa T., Yamazaki M., Aimi N., and Saito K. (2002). Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnology Letters, 24: 359-363. DOI: https://doi.org/10.1023/A:1014568904957. Titball R. W., Burtnick M. N., Bancroft G. J., and Brett P. (2017). Burkholderia pseudomallei and Burkholderia mallei vaccines: are we close to clinical trials?. Vaccine, 35: 5981-598. DOI: https://doi.org/10.1016/j.vaccine.2017.03.022. Tzfira T., and Citovsky V. (2006). Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Current Opinion in Biotechnology, 17: 147-154. DOI: https://doi.org/10.1016/j.copbio.2006.01.009. Valimehr S., Sanjarian F., Sharafi A., and Sabouni F. (2014). A reliable and efficient protocol for inducing genetically transformed roots in medicinal plant Nepeta pogonosperma. Physiology and Molecular Biology of Plants, 20: 351-356. DOI: 10.1007/s12298-014-0235-5. Valimehr S., Sanjarian F., Sharafi A., and Sabouni F. (2014). A reliable and efficient protocol for inducing genetically transformed roots in medicinal plant Nepeta pogonosperma. Physiology and Molecular Biology of Plants, 20: 351-356. DOI: 10.1007/s12298-014-0235-5. Wiersinga W. J., Virk H. S., Torres A. G., Currie B. J., Peacock S. J., Dance D. A., and Limmathurotsakul D. (2018). Melioidosis. Nature Reviews Disease Primers, 4: 17107. DOI: 10.1038/nrdp.2017.107. Xu Y., Cao Y., Wang Y., Fu C., and Dai S. (2019). Agrobacterium rhizogenes-mediated Transformation System of Spinacia oleracea. Chinese Bulletin of Botany, 54: 515-521. DOI: 10.11983/CBB18257. Yaqi Q., Guibing H., and Jietang Z. (2020). Studies on Agrobacterium rhizogenesis-mediated transformation of LcMYB1 gene into tobacco leaves. Acta Horticulturae Sinica, 47: 635-642. DOI: 10.16420/j.issn.0513-353x.2019-0695. Zhou M.-L., Zhu X.-M., Shao J.-R., Tang Y.-X., and Wu Y.-M. (2011). Production and metabolic engineering of bioactive substances in plant hairy root culture. Applied Microbiology and Biotechnology, 90: 1229-1239. DOI: 10.1007/s00253-011-3228-0. | ||
آمار تعداد مشاهده مقاله: 168 تعداد دریافت فایل اصل مقاله: 210 |