تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,807 |
تعداد دریافت فایل اصل مقاله | 2,844,973 |
Genetic structure of germination parameters in Iranian wheat RILs under salinity stress | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 11، شماره 1 - شماره پیاپی 21، مرداد 2022، صفحه 53-69 اصل مقاله (1.31 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.18500.1336 | ||
نویسندگان | ||
Somayyeh Sanchouli؛ Abbas Biabani؛ Hossein Sabouri* ؛ Seyed Javad Sajadi؛ Ali Rahemi karizaki؛ Masoumeh Naeimi | ||
Department of Plant Production, Faculty of Agricultural Sciences and Natural Resources, Gonbad Kavous University, Golestan, Iran. | ||
تاریخ دریافت: 16 اسفند 1401، تاریخ بازنگری: 08 خرداد 1402، تاریخ پذیرش: 17 خرداد 1402 | ||
چکیده | ||
In order to increase global wheat production, it is necessary to examine different ways of increasing yield. One of the solutions is to identify the genes that control different stress tolerance indices. This research aims to identify the genes controlling quantitative traits under normal conditions and salt stress in the germination stage. The experiments were carried out in a factorial form using a completely randomized design with 3 replications, on 107 lines resulted from the crossing of Gonbad and Zagros cultivars at Gonbad Kavous University, 2021. A linkage map was obtained using 519 SSR, 8 CAAT, 33 IJS, 47 iPBS, 3 IRAP, 17 RAPD, 8 SCoT and 12 ISSR markers on 21 wheat chromosomes. The length of the linkage map was 4918.94 cM and the distance between two adjacent markers about 5.55 cM. A total of 84 QTLs were detected in normal and salinity stress conditions (control, 6 dS/m, 12 dS/m), of which seven QTLs were related to control condition, 42 QTLs were related to 6 dS/m salinity stress and 35 QTLs were related to 12 dS/m stress condition. qLR-B3, qMGT-A5, qR/SDW-B2, qR/SDW-A3, qR/SDW-B7, qLS-A5 and qILVS-A5 were detected under control condition. qSLI-D6 was identified as a major QTL for SLI under 6 dS/m salinity stress by explaining more than 44% of the phenotypic variation of the trait. In the 12 dS/m salinity stress, several gene loci of large effect QTLs were detected, among which qIWVS-B3 explained more than 55% of the phenotypic diversity of the trait. After validation, the results of this research can introduce suitable candidates for marker-assisted selection programs in the population of Iranian wheat RILs. | ||
کلیدواژهها | ||
Abiotic stress؛ Linkage map؛ SSR؛ QTL | ||
عنوان مقاله [English] | ||
ساختار ژنتیکی پارامترهای جوانه زنی در لاین های نوترکیب گندم ابرانی تحت تنش شوری | ||
نویسندگان [English] | ||
سمیه سنچولی؛ عباس بیابانی؛ حسین صبوری؛ سید جواد سجادی؛ علی را حمی کاریزکی؛ معصومه نعیمی | ||
گروه تولیدات گیاهی، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس، گلستان، ایران. | ||
چکیده [English] | ||
برای افزایش تولید جهانی گندم ، بررسی راه های مختلف افزایش عملکرد ضروری است. یکی از این راه حل ها شناسایی ژن هایی است که صغات مرتبط با تحمل به تنش را کنترل می کنند. به همین منظور و برای شناسایی ژنهای کمی کنترل کننده تحمل به تنش شوری، آزمایشی در مرحله جوانهزنی در قالب طرح کاملا تصادفی با استفاده از 107 لاین گندم حاصل از تلاقی ارقام گنبد و زاگرس در دانشکده کشاورزی دانشگاه گنبدکاووس در سال 1400 انجام شد. نقشه پیوستگی با استفاده از 519 SSR، 8 CAAT ، 33 IJS ، 47 iPBS ، 3 IRAP ، 17 RAPD ، 8 ScOT و 12 نشانگر ISSR روی 21 کروموزوم گندم.SSR به دست آمد. در مجموع 31 QTL در شرایط نرمال و تنش شوری شناسایی شد که هفت QTL برای شرایط کنترل، 13 QTL برای تنش شوری 6 دسی زیمنس بر متر و 11 QTL شناسایی شد. برای تنش 12 دسی زیمنس بر متر qLR-B3، qMGT-A5، qR/SDW-B2، qR/SDW-A3، qR/SDW-B7، qLS-A5 و qILVS-A5 در شرایط عادی شناسایی شدند. qSLI-D6 به عنوان یک QTL اصلی برای SLI تحت شرایط تنش شوری 6 دسی زیمنس بر متر با توجیه بیش از 44 درصد از تغییرات فنوتیپی صفت شناسایی شد. در شرایط تنش شوری 12 دسی زیمنس بر متر، چندین جایگاه ژنی با QTLهای اثر بزرگ شناسایی شد که در میان آنها qIWVS-B3 بیش از 55 درصد از تنوع فنوتیپی صفت را توضیح داد. نتایج این تحقیق پس از تعیین اعتبار می تواند در برنامه های گزینش مورد استفاده قرار گیرد | ||
کلیدواژهها [English] | ||
تنش غیر زیستی, نقشه پیوستگی, ریزماهواره, QTL | ||
مراجع | ||
Abdul Baki A. A., and Anderson J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13: 630-633. AL-Quraan N. A., AL-Ajlouni Z. I., and Obedat D. I. (2019). The GABA shunt pathway in germinating seeds of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) under salt stress. Seed Science Research, 29(4): 1-11. DOI: https:// doi.org/10.1017/S0960258519000230. Amraei Y. (2014). Genetic diversity of breed and durum wheat (Triticum aestivum L.) germplasm under control and abiotic stress. Report of Project, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, pp. 76. Arzani A. (2008). Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cellular and Developmental Biology Plant, 44: 373-383. Arzani A., and Ashraf A. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 35: 146-189. Ashraf S., Shahzad A., Karamat F., Iqbal M., and Ali G. (2015). Quantitative trait loci (QTLs) analysis of drought tolerance at germination stage in a wheat population derived from synthetic hexaploid and Opata. The Journal of Animal & Plant Sciences, 25: 539-545 Asseng S., Guarin J. R., Raman M., Monje O., Kiss G., Despommier D. D., Meggers F. M., and Gauthier P. P. G. (2020). Wheat yield potential in controlled-environment vertical farms. Proceedings of the National Academy of Sciences, 117: 19131-19135. Azadi A., Mardi M., Majidi Hervan E., Mohammadi A. S., Moradi F., Tabatabaee M. T., Pirseyedi S. M., Ebrahimi M., Fayaz F., Kazemi M., Ashkani S., Nakhoda B., and Mohammadi-Nejad G. H. (2015). QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Molecular Biology Reporter, 33: 102-120. Batool N., Ilyas N., Shahzad A., Hauser B. A., and Arshad M. (2018). Quantitative trait loci (QTLS) mapping for salt stress tolerance in wheat at germination stage. Pakistan Journal of Agricultural Research, 55(1): 47-55. Bidinger F. R., Mahalakshmi V., and Rao G. D. (1987). Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response to stress. Australian Journal of Agricultural Research, 38: 49-59. Bouslama M., and Schapaugh W. T. (1984). Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24: 933-937. Czyczyło-Mysza I., Marcińska I., Skrzypek E., Cyganek K., Juzoń K., and Karbarz M. (2014). QTL mapping for germination of seeds obtained from previous wheat generation under drought. Central European Journal of Biology, 9: 374-382. De F., and Kar R. K. (1994). Seed germination and seeding growth of mung been under water stress induced by PEG 6000. Seed Science and Technology, 23: 301-304. Dvorak J., Noaman M. M., and Gorham G. (1994). Enhancement of the salt tolerance of Triticum turgiduml L. by the Knal locus transferred from the Triticum aestivum L. chromosome 4D by homologous recombination. Theoretical and Applied Genetics, 87: 872-877. Elias S. G., and Copleland L. O. (2001). Physiological and harvest maturity of canola in relation to seed quality. Agronomy Journal, 92: 1054-1058. Enchebroun S. (2014). Genetic diversity and preparation of genetic linkage map in wheat (Triticum aestivum L.) population caused Zagros×Gonbad crosses. Report of Project, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, pp. 59. Feizi M., Aghakhani A., Mostafazadeh-Fard B., and Heidarpour M. (2007). Salt tolerance of wheat according to soil and drainage water salinity. Pakistan Journal of Biological Sciences (PJBS), 10: 2824-2830. Fernandez G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. In: Kuo C. G. [Ed.], Adaptation of food crops to temperature and water stress. Asian Vegetable Research and Development Center, Shanhua, Taiwan, 257-270. Fischer R. A., and Maurer R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29: 897-912. Fischer R. A., and Wood T. (1979). Drought resistance in spring wheat cultivars III. Yield association with morphological traits. Australian Journal of Agricultural Research, 30: 1001-1020. Flowers T. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55: 307-319 Flowers T. J., and Colmer T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179: 945963. Gavuzzi P., Rizza F., Palumbo M., Campaline R. G., Ricciardi G. L., and Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77: 523-531. Ghaedrahmati M., Mardi M., Naghavi M. R., Majidi Haravan E., Nakhoda B., Azadi A., and Kazemi M. (2014). Mapping QTLs associated with salt tolerance related traits in seedling stage of wheat (Triticum aestivum L.). Journal of Agricultural Science and Technology, 16: 1413-1428. DOI: https://jast.modares.ac.ir/article-23-5467-en.html. Gregorio G. B., Senadhira D., and Mendoza R. (1997). Screening rice for salinity tolerance. IRRI. Discussion Paper No. 22. International Rice Research Institute, Philippines. Hosseini S. J., Tahmasebi S. Z., and Pirdashti H. (2012). Analysis of tolerance indices in irrigated and rain-fed environments. Advances in Environmental Biology, 5: 3212-3218. Izaddoost H., Samizadeh H., Rabiei B., and Abdollahi S. (2013). Evaluation of salt tolerance in rice (Oryza sativa L.) cultivars and lines with emphasis on stress tolerance indices. Cereal Research, 3: 167-180. (In Persian) Jones H. G. (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58:119-130. Kader M. A., and Jutzi S. C. (2004). Effects of thermal and salt treatments during imbibition on germination and seedling growth of sorghum at 42/19˚C. Journal of Agronomy and Crop Science, 190: 35-38. Kosambi D. D. (1944). The estimation of map distances from recombination values. Annuals of Eugene, 12: 172-175. Li L., Mao X-G., Wang J-Y., Chang X-P., Reynolds M., and Jing R-L. (2019). Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant, Cell & Environment, 42: 2540-2553. Lian J., Wu J., Xiong H., Zeb A., Yang T., Su X., Sua L., and Liu W. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials, 358: 121620. Lindsay M. P., Lagudah E. S., Hare R. A., and Munns R. (2004). A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biology, 31: 1105-1114 Liu G., Jiang W., Tian L., Fu Y., Tan L., Zhu Z., Sun C., Liu F. (2022). Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice. Journal of Genetics and Genomics, 49(5): 458-468. Liu X. Y., Zhang H., Hu X. W., Wang H. G., Gao J. R., Liang S. X., and Feng J. Y. (2017). QTL Mapping for drought-tolerance coefficient of seedling related traits during wheat germination. Journal of Nuclear Agricultural Sciences, 31: 209-217. Liu C., Sukumaran S., Claverie E., Sansaloni C., Dreisigacker S., and Reynolds M. (2019). Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Molecular Breeding, 39: 34. DOI: https://doi.org/10.1007/s11032-019-0938-y. Long N. V., Dolstra O., Malosetti M., Kilian B., Graner A., Visser R. G. F., and Linden C. G. (2013). Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 126: 2335-2351. Manly, K. F., Olson, J. M. (1999). Overview of QTL mapping software and introduction to map manager QTX. Mammalian Genome 10: 327-334. Marouf K., and Mohammadi S. A. (2015). Mapping QTLs associated with wheat seed germination under normal and drought stress conditions. Journal of Crop Science and Biotechnology, 4: 1-14. Masoudi B., Mardi M., Majidi Hervan E., Bihamta M. R., Naghavi M. R., Nakhoda B., and Amini A. (2015). QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Molecular Biology Reporter, 33: 1790-1803. Meng Y., Qu G., Wang T., Sun Q., Liang D., and Hu S. (2017). Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process, 37: 1105-1119. Moursi Y. (2014). Genetic mapping of QTL controlling salt tolerance and glucosinolates in Brassica napus and Brassica oleracea. Doctoral Dissertation, Faculty of Agricultural Sciences, Georg-August-University Göttingen, Germany. Munns R., Husain S., Rivelli A. R., James R. A., Condon A. G., Lindsay M. P., Lagudah E. S., Schachtman D. P., and Hare R. A. (2002). Avenues for increasing salt tolerance of crop and the role of physiologically based selection traits. Plant Soil, 247: 93-105 Munns R., James R. A., and Läuchli A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043. Mwando E., Angessa T. T., Han Y., Zhou G., and Li C. (2021). Quantitative trait loci mapping for vigour and survival traits of barley seedlings after germinating under salinity stress. Agronomy, 11: 103. DOI: https://doi.org/10.3390/agronomy11010103. Nagel M., Navakode S., Scheibal V., Baum M., Nachit M., Röder M., and Börner A. (2014). The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biologia Plantarum, 58: 681-688. Pitman M. G., and Läuchli A. (2002). Global impact of salinity and agricultural ecosystems. In book: Salinity: Environment-Plants-Molecules, 3-20. DOI:10.1007/0-306-48155-3_1. Pour‐Aboughadareh A., Yousefian M., Moradkhani H., Moghaddam Vahed M., Poczai P., and Siddique K. H. M. (2019). iPASTIC: An online toolkit to estimate plant abiotic stress indices. Applications in Plant Sciences, 7(7): e11278. Rauf M., Munir M., Hassan M. U., Ahmad M., and Afzal M. (2007). Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. African Journal of Biotechnology, 6: 971-975. Rehman Arif M. A., Attaria F., Shokat S., Akram S., Qandeel Waheed M., Arif A., and Börner A. (2020). Mapping of QTLs associated with yield and yield related traits in durum wheat (Triticum durum Desf.) under irrigated and drought conditions. International Journal of Molecular Sciences, 21: 2372 Ren Y., Xu Y., Teng W., Li B., and Lin T. (2018). QTLs for seedling traits under salinity stress in hexaploid wheat. Ciência Rural, 48: e20170446 Rosielle A. A., and Hamblin J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environments. Crop Science, 21: 943-946. Sabouri H., Alegh S. M., Sahranavard N., and Sanchouli S. (2019). Mapping QTLs controlling agricultural traits in the population of wheat recombinant inbred lines. Report of Project, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, pp. 67. Sabouri H., Alegh S. M., Sahranavard N., and Sanchouli S. (2022). SSR linkage maps and identification of QTL controlling morpho-phenological traits in two Iranian wheat RIL populations. BioTech, 11: 32. Saghi Maroof M. A., Biyaoshev R. M., Yang G. P., Zhang Q., and Allard R. W. (1994). Extra ordinarily polymorphic microsatellites DNA in barly species diversity, chromosomal location, and population dynamics. Processing of the Academy of Sciences, USA, 91: 4566-5570. Sallam A., Alqudah A. M., Dawood M. F. A., Baenziger P. S., and Börner A. (2019). Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 20(13): 3137. DOI: https://doi.org/10.3390/ijms20133137. Shan S. H., Gorham J., Forster B. P., and Wyn Jones R. G. (1987). Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. Journal of Experimental Botany, 38: 254-269. Shrivastava P., and Kumar R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123-131. Wang Z. F., Wang J. F., Bao Y. M., Wu Y. Y., and Zhang H. S. (2011). Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 178: 297-307. Wu H., Guo J., Wang C., Li K., Zhang X., Yang Z., Li M., and Wang B. (2019). An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Frontiers in Plant Science, 10: 530. DOI: https://doi.org/10.3389/fpls.2019.00530. Wyn Jones R. G., Gorham J., and McDonnell E. (1984). Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. In: Staples R. C., Toenniessen G. H. (Eds.), Salinity tolerance in plants: strategies of crop improvement. Wiley, New York, 189-203. Xu S. B., Tao Y. F., Yang Z. Q., and Chu J. Y. (2002) A simple and rapid method used for silver staining and gel preservation. Hereditas, 24: 335-336. Yuan Q-Q., Li Z-K., Tian J-C., and Han S-X. (2011). QTL mapping for coleoptile length and radicle length in wheat under different simulated moisture stresses. Acta Agronomica Sinica, 37: 294-301. Zebeau M., and Vos P. (1993). Selective restirection fragment amplification: A general method for DNA fingerprinting. Word Intellectual property organization Press. Geneva, Suuatzerland. Ziemann M., Kamboj A., Hove R. M., Loveridge S., El-Osta A., and Bhave M. (2013). Analysis of the barley leaf transcriptome under salinity stress using mRNA-Seq. Acta Physiol. Plant, 35: 1915-1924. Zhang, Y. W., Wen, Y. J., Dunwell, J. M., and Zhang, Y.M. (2020). QTL.gCIMapping.GUI v2.0: An R software for detecting small-effect and linked QTLs for quantitative traits in bi-parental segregation populations. Computational Structural Biotech, 18: 59-65. | ||
آمار تعداد مشاهده مقاله: 269 تعداد دریافت فایل اصل مقاله: 419 |