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ABSTRACT INFO ABSTRACT

Research Paper Drought is one of the main abiotic stresses limiting wheat growth and productivity 
worldwide. The main objective of this work was to determine population structure 
and marker-trait association (MTA) of 13 morpho-physiological traits of bread 
wheat for drought-tolerance breeding. To this end, twenty-five diverse wheat 
cultivars and promising lines were genotyped using AFLP. The phenotype 
evaluation steps of studding wheat genotypes were performed under normal 
and drought-stress conditions during 3 years. Low heritability estimates were 
obtained for spike length, heading date (DTH), and shoot biomass (24.87-
28.8%) while, a high heritability was observed for the number of kernels per 
spike (KPS) (89.21-90.55%). The results exhibited high polymorphic level 
ranged from 84.62 to 100%, proving that AFLP method can be an effective tool 
in assessing genetic variability in any wheat breeding programs. Population 
structure analysis showed five subpopulations with at least 65% membership 
ancestry to their allocated sub-clusters, which was highly consistent with the 
results of cluster analysis. Mixed linear method association analysis identified 
66 significant MTAs with p-values 10−06 to 10−04, justifying 7.8 to 38.7% of the 
phenotypic variation, observed under both environmental conditions. There 
were two pleiotropic markers for grain yield (GY) and KPS under normal and 
one pleiotropic marker for GY, thousand kernel weight (TKW) and KPS under 
stress conditions. The common MTAs were detected for DTH, plant height, 
peduncle length, and TKW under both environmental conditions. The identified 
linked markers with GY and its components in this study could be desirable 
candidate genes for future studies and marker assisted selection to develop 
drought-tolerant genotypes in wheat breeding programs.
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INTRODUCTION
Bread wheat (Triticum aestivum L.) is the most 
important crop in terms of production worldwide 
cultivated in 220.7 million hectares (FAO, 2021), 
mainly grown in arid and semi-arid regions of the world 
where water deficit is causing significant performance 
declines (Bijalwan et al., 2022). Drought stress is one 
of the most challenging environmental stresses that 
has limited the survival and growth of wheat in arid 
and semi-arid regions (Sallam et al., 2019). Thus, it is 
important to improve drought tolerance and detection 
of genomic loci and basic candidate genes associated 
with drought tolerance in wheat (Bhatta et al., 2018).

Drought tolerance is a complex quantitative trait, 
controlled by multiple genes and plant traits, with 
minor effects (Serba and Yadav, 2016). Due to the 
low heritability of drought tolerance, selection for this 
feature should be carried out in more than one year 
and/or location in the target environments (Sallam et 
al., 2019). To obviate the low heritability of drought 
tolerance, plant breeders used DNA molecular markers 
in their programs with good effect on improving 
drought tolerance in cereals (Thabet et al., 2018). 
The AFLP is a PCR-based fingerprinting technique, 
developed by Vos et al. (1995). The advantages of this 
method include considerable repeatability (Jones et al., 
1997; Paun and Schonswetter, 2012; Reshma and Das, 
2021), simultaneous study of multiple loci, needless 
to initial information for primer design, total genome 
investigation capacity to represent polymorphism and 
produce a large number of repeatable bands over short 
periods of time (Vos et al., 1995; Zhu et al., 2013). 
Producing a large number of polymorphic loci in 
AFLP, could balance the lack of information caused 
by its dominant nature (Paun and Schonswetter, 2012). 
Kumar et al. (2015) stated that AFLP is an indicator 
of genetic classification, developing of linkage maps, 
mapping of essential traits and assigning parentage.

Despite the fact that valuable genetic information 
exists from factors involved in drought tolerance in 
plants, as a result of the identification of QTLs after 
the development of molecular markers, but in many 
studies known QTLs have a high genetic distance 
with their flanking markers. This results from many 
factors such as the lack of saturation of the linkage map 
and the low segregation of individuals in the studied 
synthetic populations. These factors are limiting the 
use of marker assisted selection (MAS) in the breeding 
programs and the gene cloning based on the map. 
Recently, in order to overcome respective limitations, 
association analysis method has been introduced that 

not only allows for the accurate locating of genes and 
QTLs, but also identifies other chromosomal locations 
that are not possible in linkage-base studies. In this 
method, development of a segregating population that 
requires a great deal of time is not necessary, but it is 
better to use multi-year phenotypic data (Wang et al., 
2017). The association analysis that is also common 
to LD analysis has significant advantages over linkage 
analysis. Firstly, due to using natural population in 
such studies, a greater genetic diversity is observed 
compared to bi-parental population. Secondly, 
depending on the population, LD analysis has a much 
higher accuracy, because in this method all meiosis 
events that are accumulated during the evolutionary 
history of the plant are considered (Zhang et al., 2016). 
It is important to conclude associations between 
markers and traits to develop utilization of prevalent 
breeding methods. Association analysis between 
different traits and markers under contrasting moisture 
regimes has been performed by plant breeders in bread 
wheat (Ayalew et al., 2018; Sukumaran et al., 2018a; 
Bhatta et al., 2018; Khalid et al., 2019; Lin et al., 2019; 
Mathew et al., 2019; Maulana et al., 2020; Merida-
Garcia et al., 2020; Liu and Qin, 2022). A number of 
functional markers have been identified for important 
genes in wheat such as, genes associated with grain 
yield and related traits (Mwadzingeni et al., 2017; 
Qaseem et al., 2018; Liu et al., 2019; Marzougui et al., 
2019; Ballesta et al., 2020; Zhu et al., 2020; Hu et al., 
2021; Govta et al., 2022; Rabieyan et al., 2022; Said et 
al., 2022; Firouzian et al., 2023). However, the rarity 
of genetic markers and limited investigations on MTAs 
for physiological traits such as RWC (Abou-Elwafa, 
2016; Khalid et al., 2019; Lin et al., 2019; Ahmed et 
al., 2022) and flag leaf area (Bhatta et al., 2018; Ahmed 
et al., 2021) despite their significant consequences for 
drought tolerance as well as, the inherent complexities 
of assessing drought stress and its related responses 
(Verslues et al., 2014; Kang et al., 2015; Bac-
Molenaar et al., 2016), prevent the use of MAS in 
expanding breeding populations for drought tolerance 
in bread wheat. Several recent studies used AFLP for 
identification of markers associated with important 
traits in multiple plants including tobacco, sugarcane, 
safflower, chickpea, pea, cumin, maize, durum wheat, 
proso millet and Psammochloa villosa (Trin.) (Dadras 
et al., 2014; Gouy et al., 2015; Kumar et al., 2015; 
Ebrahimi et al., 2017; Saeed and Darvishzadeh, 2017; 
El-Esawi et al., 2018; Archangi et al., 2019; Giordani 
et al., 2019; Roncallo et al., 2019; Yazdizadeh et al., 
2020; Lv et al., 2021).

Although the association analysis has been used 
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to identify suitable alleles for different traits in bread 
wheat but there are few reports using this method in 
wheat, especially for multi-environment data including 
water-stress conditions in Iranian wheat genotypes. 
Accordingly, the objectives of the present study were 
to characterize the population structure within wheat 
genotypes and to identify AFLP markers associated 
with yield-related characteristics as well as RWC and 
RWL using association analysis for future marker-
assisted breeding to improve drought tolerance in 
wheat.

MATERIALS AND METHODS 
Plant materials and phenotyping 
Field trials were conducted in the Miandoab 
Agricultural Research Station, West Azerbaijan 
Province, Iran, located at 36°58ʹ N and 46°06ʹ E. The 
soil texture of this site was loamy silt with pH 7.9 and 
the soil field capacity (FC) at a depth of 30 cm was 
28.7. Climatic parameters are shown in supplementary 
Figure 1 (Figure S1). A total of twenty five diverse 
wheat genotypes containing cultivars and promising 
lines (Table 1), were included in the drought tolerance 

study. These lines were developed by several breeders 
at various research stations/institutes of Iran and the 
International Maize and Wheat Improvement Center 
(CIMMYT).

Test materials were evaluated phenotypically 
comprising two trials under non-stressed (well-
watered) and water-deficit stressed (rain-fed) 
conditions. Each field experiments were arranged 
based on a randomized complete blocks design 
(RCBD) with three replications and conducted over 
three cropping seasons (2014/2015, 2015/2016 and 
2016/2017). The total rainfall during the cropping 
seasons of 2014/2015, 2016/2015 and 2016/2017 
were 298.6, 306.4 and 185 mm, respectively, with an 
average of 263.3 mm, which compared to the long-
term average, there was a decrease of 9.21% (Figure 
S1). Under non-stress conditions, the genotypes were 
irrigated when mean soil water content fell to 80% of 
FC. Each plot consisted of six rows, 4-m-long and 20 
cm row spacing. Farm management advice for each 
environment was followed in every yield experiment. 
In each trial, evaluations were carried out for the 
following traits according to assigned protocols (Pask 
et al., 2012): Number of days to 50% heading (DTH, 

Code Pedigree/Name Type Origin 
G1 Varan Cultivar IRAN 
G2 Rasad Cultivar IRAN 
G3 Azar 2 Cultivar IRAN 
G4 Sardari Cultivar IRAN 
G5 Unknown 11 Promising line IRAN 
G6 Saein Cultivar IRAN 
G7 Seafalah/3/Sbn//Trm/K253 Promising line IRAN 
G8 F10S-1//ATAY/GALVEZ87 Promising line IWWIP 
G9 Sardari-101 Promising line IRAN 
G10 Azar2/87Zhong291-149 Promising line IRAN 
G11 Homa Cultivar IRAN 
G12 Ohadi Cultivar IRAN 
G13 Sabalan/4/Vrz/3/Or F1.148/Tdl//Blo Promising line IRAN 
G14 Sabalan//Cno79/Prl"S"/3/Pf82200/4/Ebvd99-1 Promising line IRAN 
G15 SARDARI-HD84//UNKN/HATUSHA Promising line IRAN 
G16 F130-L-1-12/LAGOS Promising line IWWIP 
G17 Sara-PBWYT-85-86-22-5 Promising line IWWIP 
G18 PYN/BAU//BONITO Promising line IWWIP 
G19 Sabalan/84.40023//Seafallah Promising line IRAN 
G20 SUBEN-7 Promising line IWWIP 
G21 Azar2/78Zhong291-99 Promising line IRAN 
G22 Sardari//Ska/Aurifen Promising line IRAN 
G23 TIRCHMIR1/LCO//SABALAN Promising line IWWIP 
G24 TAST/TORIM/3/MLC/4/CWW339.5/SPN/5 Promising line IWWIP 
G25 BJN C 79/4/KVZ/CUT75/3/YMH//61.15 Promising line IWWIP 

Table 1. Codes and the pedigree of diverse wheat cultivars and Promising lines used in this study.

IWWIP: International Winter Wheat Improvement Program.
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day), plant height (PH, cm), flag leaf area (FLA, cm2), 
spike length (SL, cm), dry weight per spike (DWPS, 
g), number of kernels per spike (KPS), thousand kernel 
weight (TKW, g), peduncle length (PL, cm), peduncle 
weight (PW, g), shoot biomass (SB, kg ha-1) and grain 
yield (GY, kg ha-1). For the evaluation of physiological 
traits, after anthesis stage, fresh leaves were taken from 
each genotype and weighed instantly to record fresh 
weight (FW). Then leaves were soaked in distilled 
water for 4 h at 25 °C and reweighed to record turgid 
weight (TW), and oven-dried for 48 h at 72 °C to 
obtain the dry weight (DW). The relative water content 
(RWC, %) and relative water loss (RWL, gr/gr.hr) 
were calculated, as explained by Ritchie et al. (1990) 
and Yang et al. (1991), respectively:

 
Where ADW is wilt weight after 2 h at 30 °C, and t 

is the time in hour at the wilt weight.

DNA extraction and AFLP analysis
Young leaf tissues of four-week-old seedlings were 
used for genomic DNA extraction following the 
CTAB method described by Saghai Maroof et al. 
(1984). The DNA concentration in each sample was 
adjusted to a working solution of 50 ng μL-1. The 
DNA samples were then exposed to AFLP analysis 
using the protocol explained by Vos et al. (1995) with 
some modifications. Based on the polymorphism 
information content and the effective multiplex 
ratio, eight AFLP primer pairs displayed a higher 
variability from twenty primer sets and were employed 
to assess the genotypes (Table 2). Genomic DNA 
(500 ng) were digested with 5U of each EcoRI (Tag 
Copenhagen A/S, Frederiksberg, Denmark; 12 h at 37 

°C) and MseI (Tag Copenhagen A/S, Frederiksberg, 
Denmark; 12 h at 65 °C) restriction enzymes. The 
restricted DNA fragments were ligated via T4 DNA 
ligase (1U/µL) to adapters with the known sequences 
EcoRI F (5’-CTCGTAGACTGCGTACC-3’), 
EcoRI R (3’-CTGACGCATGGTTAA-5’), MseI 
F (5’-GACGATGAGTCCTGAG-3’) and MseI R 
(3’-TACTCAGGACTCAT-5’) at 22 °C for 1 h. The 
adaptor-ligated DNA was diluted to 1:5 by water and 
was used for pre-selective amplification with EcoRI 
and MseI primers containing one selective base at the 
3´ end (EcoRI-A and MseI-C). Selective amplification 
was performed using diluted DNA from the pre-
amplification reaction and eight EcoRI/MseI primer 
sets (Table 2). The amplification PCR was carried 
out under the following conditions: After an initial 
denaturation step at 94 °C for 2 min, 13 cycles of 94 
°C for 30 s, 65 °C for 30 s as touchdown with 0.7 °C 
lowering for each cycle, and 72 °C for 60 s. The PCR 
was followed by a subsequent 23 cycles of 94 °C for 30 
s, 56 °C for 30 s and 72 °C for 60 s, and one final cycle 
of extension at 72 °C for 5 min. 

The amplified fragments were transferred directly 
from the thermocycler into the QIAxcel System 
(QIAGEN, Hilden, Germany) and analyzed using the 
QIAxcel DNA High Resolution Kit on the system with 
the 0M700 method. The QIAxcel system is able to 
separate fragments of 12 DNA samples at 3 min in high 
resolution without the need for agarose. The AFLP 
bands were scored for presence as (1) and absence (0) 
via BioCalculator software (v. 3.2; QIAGEN) and only 
bands showing clear polymorphism were used to make 
a binary data matrix. 
Analysis of phenotypic data
Phenotypic data were exposed to the Kolmogorov–

Restriction Enzyme EcoRI MseI 
Adapters 5'-CTCGTAGACTGCGTACC-3' 5'-GACGATGAGTCCTGAG-3' 
 3'-CTGACGCATGGTTAA-5' 3'-TACTCAGGACTCAT-5' 
Pre-selective 
amplification 5'-GACTGCGTACCAATTCA-3' 5'-GATGAGTCCTGAGTAAC-3' 

 E-AGG:5'-GACTGCGTACCAATTCAGG-3' M-CTT:5'-GATGAGTCCTGAGTAACTT-3' 
 E-AGC:5'-GACTGCGTACCAATTCAGC-3' M-CTT:5'-GATGAGTCCTGAGTAACTT-3' 
 E-ACT:5'-GACTGCGTACCAATTCACT-3' M-CTC:5'-GATGAGTCCTGAGTAACTC-3' 
Selective amplification E-AGG:5'-GACTGCGTACCAATTCAGG-3' M-CTC:5'-GATGAGTCCTGAGTAACTC-3' 
 E-ACG:5'-GACTGCGTACCAATTCACG-3' M-CTG:5'-GATGAGTCCTGAGTAACTG-3' 
 E-AGG:5'-GACTGCGTACCAATTCAGG-3' M-CTG:5'-GATGAGTCCTGAGTAACTG-3' 
 E-ACT:5'-GACTGCGTACCAATTCACT-3' M-CTT:5'-GATGAGTCCTGAGTAACTT-3' 
 E-ACG:5'-GACTGCGTACCAATTCACG-3' M-CAA:5'-GATGAGTCCTGAGTAACAA-3' 

Table 2. Description of primer combinations used for AFLP analysis in wheat genotypes.

(2)

(1) RWC = {(FW − DW)/(TW− DW)} × 100                                                                   

RWL = (FW− ADW)/(t × DW)                                                                                             
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Smirnov test for normality in SPSS v. 19 software. 
Analysis of variance (ANOVA) was performed using 
Genstat 14th edition to assign the main effects and 
interactions using F test (P<0.05). Descriptive statistics 
along with phenotypic coefficient of variation (CVp) 
and genotypic coefficient of variation (CVg) were 
calculated in Genstat 14th. The H2 values for each trait 
under both environments were computed according to 
Nyquist (1991) as follows: 

 

Where σ2
g, σ

2
gy and σ2

e are the variance components 
for genotype, genotype×year, and residual, respectively, 
while y and r are the number of years and replications 
per year, respectively.

Analysis of molecular data
For each primer pair, total amplified bands, number of 
polymorphic bands and the percentage of polymorphic 
bands (PPB) were calculated. AFLP markers were 
used to evaluate genetic diversity indices under 
the assumption that populations were in Hardy-
Weinberg equilibrium (HWE), such as polymorphic 
information content (PIC) (Roldan-Ruiz et al., 2000), 
the effective number of alleles per locus (Ne) (Hartl 
and Clark, 1989), marker index (MI) (Varshney et 
al., 2007), Nei’s gene diversity or heterozigosity 
(He) (Nei, 1973) and Shannon’s Information Index 
(I) (Lewontin, 1972) using GenAlEx v. 6.503 
software (Peakall and Smouse, 2012). To evaluate the 
variance within and among subpopulations derived 
from structure analysis, an analysis of molecular 
variance (AMOVA) was carried out using GenAlEx 
with 999 permutations. The PhiPT statistics were 
computed to determine the genetic differences among 
subpopulations as follows: 

 

Where AP and WP are the estimates of genetic 
diversity among and within subpopulations, 
respectively.

Genetic relatedness among genotypes and 
population structure
Analysis of population structure based on data from 
AFLP markers was investigated using the model-
Bayesian STRUCTURE v. 2.3.4 software (Pritchard 

et al., 2000) considering admixture model and 
correlated allele frequencies. Parameters were set at 
burn-in period of 10,000 and 100,000 Markov Chain 
Monte Carlo (MCMC) repetitions after burn-in. The 
membership of any genotype was run for the range of 

genetically distinctive clusters (K) from 1 to 10 with five 
iterations for each K. To decrease the risk of spurious 
positive associations, the best K-value with the highest 
likelihood was assigned for evaluating an appropriate 
population size for the dataset (Gupta et al., 2014). 
Thus, the true number of K using the ΔK approach 
described by Evanno et al. (2005) was determined by 
STRUCTURE HARVESTER (Earl and VonHoldt, 
2012). Finally, based on the optimal K determined by 
Evanno method, the Q matrix (population structure 
matrix) was extracted from the population structure 
results.

Alternately, a cluster analysis was performed to 
assess the genetic relatedness between genotypes 
using a distance-based method. For this purpose, the 
simple matching (SM) similarity matrix was subjected 
to classify the studied wheat genotypes using NTSYS-
pc, v. 2.02 based on unweighted pair group method 
with arithmetic means (UPGMA), complete linkage, 
and neighbor-joining with 1,000 bootstrap replicates 
algorithms. Finally, the complete linkage clustering 
was used since it kept a justly stable topology over the 
different distance matrices that were tested.

Association analysis
The association analysis among AFLP marker alleles 
and phenotypic traits (P-matrix) measured under non-
stressed and drought-stressed conditions was performed 
using TASSEL v. 4.2.1 software (Bradbury et al., 2007) 
via both mixed linear method (MLM) and general 
linear method (GLM) (Yu et al., 2006). The Q-matrix 
resulted from structure analysis (at maximum ΔK) was 
used like a covariate to correct population structure in 
both methods. Moreover, the kinship matrix (K matrix) 
based on the results of marker data obtained from the 
SPAGeDi program (Hardy and Vekemans, 2002) was 
used in the MLM (Q+K). The phenotypic variation 
explained per each marker (R2) was calculated to 
assign the fraction of the total variation justified by 
the marker. The markers with minor allele frequency 
(MAF) <0.05 were not considered for the analysis as 
previously explained by Mwadzingeni et al. (2017). 
The significant threshold for association among loci 
and traits was set at P<0.001 and false discovery 
rate of 5%, which was supposed to be very strict to 
decrease the risk of spurious marker trait associations 
(Sukumaran et al., 2018a).

RESULTS
Phenotypic variation between genotypes and 
contrasting moisture regimes
The results of combined ANOVA for morpho-

H2 = δg2 (δg2 + δgy2 y + δe2 ry⁄⁄ )⁄(3)

PhiPT = AP (WP + AP)⁄(4)
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physiological traits showed the year, genotype and 
moisture regimes effects significantly influenced 
SL, TKW, GY and RWL (Table 3). Except for PH 
and TKW, the significant genotype×moisture regime 
interaction on all traits was observed indicating 
genotypes responded differently to non-stressed and 
drought-stressed conditions. The genotype×year 
interaction was significant on all traits except DWPS 
and PW. The experimental CV ranged from 6.41 to 
26.62 that except for DWPS and FLA, the most values 
were less than 20%.

The SB varied from 10058 to 14291 kg ha-1 under 
non-stressed, whereas it ranged between 5014.9 and 
9949.4 kg ha-1 under drought-stressed conditions 
(Table 4). A 39.4% decline in mean SB due to drought 
stress was obtained. The highest RWC obtained 
was 91.44% under non-stressed conditions, while 
the lowest obtained was 57.72% under stressed 
conditions. On mean, GY reduced by 34% under 
drought conditions. The estimated H2 indicated that 
the highest and lowest H2 were found for KPS (89.21% 
under non-stressed and 90.55% under stressed 
conditions) and SB (28.8% under non-stressed and 
24.87% under stressed conditions), respectively. The 
broad-sense heritability obtained for grain yield was 
68.46% under non-stress and 37.50% under rain-fed 
conditions (Table 4).

AFLP Genotyping
The eight AFLP primer sets in the wheat genotypes 
produced 127 clear and reliable bands with a mean 
of 15.88 bands per primer, of which 119 bands were 
polymorphic (Table 5). The polymorphism percentage 
ranged from 84.62% (E-AGC/M-CTT and E-ACT/
M-CTC) to 100% (E-AGG/M-CTC, E-AGG/M-CTG 
and E-ACG/M-CAA) with an average of 93.14%. 
To recognize the most instructive AFLP primer 
pair, the PIC values were computed for each primer 
combination that varied from 0.267 for E-AGC/M-
CTT to 0.351 for E-ACT/M-CTT with a mean of 
0.298 (Table 5). Another criterion for assessing the 
efficiency of markers for determining polymorphism 
is the Shannon’s Index, which the highest and lowest 
values were assigned to E-ACT/M-CTT (0.543) and 
E-AGC/M-CTT (0.365) primer sets, respectively. In 
the present study, the Shannon index was positively 
correlated with PIC (r=0.867, P<0.01). MI ranged 
between 2.08 (E-AGG/M-CTC) and 6.59 (E-AGG/
M-CTT) with a mean value of 4.07 per combination. 
The primer combination E-ACT/M-CTT had the 
maximum He (0.368), while E-ACG/M-CAA had the 
minimum one. 

Source of variation 
df 

M
ean of square 

D
TH

 
PH

 
FLA 

SL 
KPS 

D
W

PS 
PL 

PW
 

TKW
 

SB 
G

Y 
R

W
C

 
R

W
L 

Year (Y) 
2 

570.61** 
765.51 

58.49 
8.53* 

29.24 
0.03 

100.97 
0.02 

249.73** 
5792296.89 

8693919.63** 
314.45 

0.012* 
M

oisture regim
e (M

) 
1 

610.28** 
5404.85 

3.15 
89.11* 4378.28* 

5.81* 
1266.10 

1.04** 
5539.64* 

777035496.34* 
44591856.83** 3888.12* 

0.054* 
Y×M

 
2 

2.36* 
1415.94* 

9.47 
5.48 

57.81 
0.02 

108.78 
0.02 

180.48* 
8967671.9 

72475.61 
229.35 

0.001 
R

 (Y×M
) 

12 
0.46 

216.42 
76.46 

1.37 
48.09 

0.03 
30.30 

0.02 
27.87 

13267081.32 
1199714.28 

98.39 
0.002 

G
enotype (G

) 
24 

12.74 
2635.75* 

168.66 
2.87** 

652.87** 
0.13** 

343.43** 0.17** 
335.57* 

15756404.74* 
6295561.24** 

690.79* 
0.021** 

G
×Y 

48 
20.94** 

1010.77** 83.52 
3.72** 

42.33** 
0.02 

57.65** 
0.01 

110.96** 
9304975.16* 

1986267.49** 
222.36** 

0.005** 
G

×M
 

24 
2.30* 

167.80 
92.21 

1.5* 
88.50** 

0.07** 
22.28* 

0.02** 
12.28 

6908562.76** 
1451751.18** 

56.80* 
0.017** 

G
×Y×M

 
48 

0.97 
86.03 

15.61 
0.43 

7.48 
0.004 

9.22 
0.002 

7.03 
878668.05 

265680.94 
25.00 

0.004 
R

esidual 
288 

0.61 
98.93 

16.79 
0.5 

11.40 
0.03 

12.61 
0.01 

7.10 
3491337.19 

317612.71 
34.93 

0.002 
C

oefficient of 
variation (%

) 
 

11.2 
8.34 

26.62 
7.16 

10.43 
24.74 

8.76 
19.16 

6.41 
16.28 

11.25 
7.28 

16.54 

Table 3. M
ean squares after com

bined analysis of variance for m
orpho-physiological traits of w

heat genotypes investigated over three years under tw
o different m

oisture 
regim

es.

df: D
egrees of freedom

, D
TH

: N
um

ber of days to heading, PH
: Plant height, FLA: Flag leaf area, SL: Spike length, KPS: N

um
ber of kernels per spike, D

W
PS: D

ry w
eight 

per spike, PL: Peduncle length, PW
: Peduncle w

eight, TKW
: Thousand kernel w

eight, SB: Shoot biom
ass, G

Y: G
rain yield, R

W
C

: R
elative w

ater content, R
W

L: R
elative 

w
ater loss.

*,**: Significant at 5%
 and 1%

 level of probability, respectively.
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Trait Conditions Mean Min Max SEM CVg (%) CVp (%) H2 (%) 

DTH NS 193.09 191.02 195.18 0.35 1 1.06 88.53 
DS 180.88 179.85 182.3 0.21 0.61 0.75 64.71 

PH NS 117.54 100.46 135.06 3.29 6.56 9.64 46.31 
DS 101.38 80.27 128.43 4.63 13.02 16.21 64.47 

FLA NS 15.53 5.70 29.40 0.61 21.78 26.96 50.14 
DS 15.24 3.27 45.63 0.91 33.68 41.10 67.86 

SL NS 10.41 5.99 14.70 0.20 8.10 9.98 65.81 
DS 9.24 3.80 14.97 0.21 6.44 7.75 67.53 

KPS NS 35.61 22.84 44.08 2.34 21.93 23.22 89.21 
DS 24.08 13.33 36.72 1.74 29.31 30.81 90.55 

DWPS NS 1.38 0.67 2.39 0.04 16.52 20.54 64.71 
DS 0.85 0.40 1.64 0.03 18.21 21.76 70 

PL NS 40.78 32.36 47.96 1.5 11.21 13.08 73.53 
DS 33.68 27.91 40.81 1.42 12.98 16.41 62.60 

PW NS 0.58 0.42 0.86 0.04 23.71 25.88 83.89 
DS 0.4 0.26 0.61 0.03 20.61 30.56 45.45 

TKW NS 44.75 35.38 50.48 1.55 10.05 11.16 82.54 
DS 31.65 25.39 37.52 1.29 12.67 15.34 68.24 

SB NS 11797 10058 14291 408.36 10.09 18.8 28.80 
DS 7151 5014.9 9949.4 384.73 15.01 30.09 24.87 

GY NS 3418.87 2454.94 4742.87 218.55 25.28 29.32 68.46 
DS 2254.88 1700.39 3057.83 134.29 10.31 24.18 37.50 

RWC NS 80.66 71.54 91.44 2.09 8.63 10.13 72.53 
DS 68.92 57.72 76.91 1.86 7.40 11.73 39.78 

RWL NS 0.228 0.105 0.379 0.022 7.93 10.68 66.17 
DS 0.368 0.173 0.652 0.038 6.88 9.08 52.55 

Table 4. Summary statistics and heritability estimates of morpho-physiological traits calculated in wheat genotypes across 
three cropping seasons under drought-stress and non-stress conditions.

DTH: Number of days to heading, PH: Plant height, FLA: Flag leaf area, SL: Spike length, KPS: Number of kernels per spike, 
DWPS: Dry weight per spike, PL: Peduncle length, PW: Peduncle weight, TKW: Thousand kernel weight, SB: Shoot biomass, 
GY: Grain yield, RWC: Relative water content, RWL: Relative water loss, NS: Non-stressed conditions, DS: Drought-stressed 
conditions, Min: Minimum value, Max: Maximum value, SEM: Standard error of mean, CVg: Genotypic coefficient of variation, 
CVp: Phenotypic coefficient of variation, H2: Broad sense heritability.

Primer 
combination TB PB PPB Ne PIC Rp MI I EMR He 

E-AGG/M-CTT 28 26 92.86 1.42 0.273 9.658 6.59 0.396 24.14 0.252 
E-AGC/M-CTT 13 11 84.62 1.37 0.266 4.162 2.48 0.365 9.31 0.228 
E-ACT/M-CTC 13 11 84.62 1.50 0.269 4.166 2.504 0.45 9.31 0.294 
E-AGG/M-CTC 6 6 100 1.60 0.347 3.334 2.083 0.508 6 0.342 
E-ACG/M-CTG 17 16 94.12 1.40 0.3 6.998 4.523 0.404 15.06 0.255 
E-AGG/M-CTG 20 20 100 1.35 0.277 7.5 5.542 0.372 20 0.229 
E-ACT/M-CTT 9 8 88.89 1.64 0.351 4.334 2.493 0.543 7.11 0.368 
E-ACG/M-CAA 21 21 100 1.45 0.3 8.666 6.306 0.416 21 0.268 
Total 127 119  11.73       
Mean 15.88 14.88 93.14 1.47 0.298 6.102 4.065 0.432 13.99 0.28 

Table 5. Genetic variation statistics generated by AFLP primer combinations in wheat genotypes.

TB: Total bands; PB: Polymorphic bands; PPB: Percentage of polymorphic bands; Ne: Effective number of alleles; PIC: 
Polymorphic information content; Rp: Resolving Power; MI: Marker index; I: Shannon’s information index; EMR: Effective 
multiplex ratio; He: Nei’s gene diversity or heterozygosity.
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Genetic structure analysis 
The admixture model-based Bayesian cluster analysis 
using STRUCTURE program was employed with 
119 AFLP polymorphic bands to investigate the 
nature of genetic relationships among genotypes. The 
bilateral charts for determining K value (the number 
of appropriate clusters) was shown in Figure S2. As 
presented in Figure S2, ΔK parameter resulted with 
the method offered by Evanno et al. (2005) was 
highest at K=5, revealing five main clusters in the 
population. Membership of each individual to a special 
subpopulation was based on at least 65% ancestry 
(Mathew et al., 2019) otherwise, it was defined as 
‘admixed’ genotype. 

Figure 1A displays the population structure for K=5 
where each color shows a distinct genetic cluster. The 
membership probability (Q matrix) of each genotype 
to each sub-cluster for the K=5 is presented in Table 6. 

Of all genotypes, 88% were allocated into the relevant 
subgroups, and the rest of them were classified into 
the ‘admixed’ genotypes based on their Q-values. Sub-
cluster 1 had the highest membership with 28% of the 
population, whereas the lowest was sub-cluster 5 only 
with 8%. Average distances (expected heterozygosity) 
between individuals in the same cluster ranged from 
0.12 (cluster 1) to 0.28 (cluster 2). Clusters 5 and 2 
represented the highest (0.56) and the lowest (0.06) 
level of the mean fixation index (Fst) among clusters, 
respectively. 

Population structure in the wheat genotypes was also 
studied by means of cluster analysis based on complete 
linkage method using SM similarity coefficient that 
classified the studied genotypes into five clusters 
(Figure 1B). The calculated cophenetic coefficient was 
0.803 revealing a high correlation among similarity 
matrix and dendrogram and displays the complete 

Figure 1. Comparison of population structure resulted from A: Bayesian model (STRUCTURE) and B: complete linkage 
cluster analysis based on SM distances using AFLP markers in the bread wheat genotypes.
See Table 1 for genotypes characteristics.

B

A
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linkage as a suitable method for this cluster analysis. 
According to SM genetic distance matrix, the genetic 
distance between the wheat genotypes varied from 
0.41 to 0.86, with an average distance of 0.61. In the 
present study, two genotypes G13 and G14 along with 
G1 and G10 had the highest genetic distance from 
other genotypes (Data not shown).

The percentage of variance justified between and 
within the various genetic subpopulations resulted 
from STRUCTURE software was determined through 
AMOVA based on PhiPT parameter (Table S1). 
According to AMOVA, the percentage of total variance 
was 81.64% within and 18.36% among subpopulations. 
The PhiPT index was significant (P<0.01), indicating 
the presence of genetic structure.

Marker-trait associations under different 
environments
Due to the more effective and stable results of the 
MLM model (G+P+Q+K) (Yu et al., 2006; Zhang et 
al., 2016), in this study, only the results of the MLM 
are reported. Table 7 represents the number of AFLP 
markers (MAF>0.05) identified for each trait evaluated 
under non-stressed and drought stress conditions.

Non-stress
Under non-stressed conditions, 36 MTAs were detected 
in P<0.001. The R2 ranged from 0.078 to 0.387 (Table 
7). The highest number of MTAs was observed for PH 
(5), followed by GY, SL, and RWC (4). Four markers 
were associated with supposed QTLs for GY, explaining 
0.136 to 0.323 of the total phenotypic variation and 
three markers were associated with KPS, explaining 
0.078 to 0.337 of the total phenotypic variation; two 
of these shared both traits. A total of three MTAs were 
identified for each of traits SB, PL, PW, KPS and FLA. 
The markers E-ACT/M-CTC-11 (R2=0.382), followed 
by E-AGG/M-CTT-24 (R2=0.204) displayed the 
strongest associations with PL and RWC, respectively. 
These two markers were the most consistent regions 
associated with multiple traits like KPS, PL, and RWC. 
Several pleiotropic loci were detected that included 

marker E-ACT/M-CTC-11, which was associated 
with DWPS, KPS, PL, PW, RWC, GY, and FLA. PL, 
RWC, and KPS were associated with marker E-AGG/
M-CTT-24, and SB, RWC, and SL were associated 
with marker E-ACT/M-CTT-7. The locus E-AGG/M-
CTG-17 was associated with GY and KPS, E-ACT/M-
CTT-8 was associated with PH and TKW and finally 
E-AGG/M-CTT-14 was associated with SL and FLA.

Drought stress
Under drought stress, 30 significant MTAs were 
observed for various traits (Table 7). Of these traits, 
RWL had the highest number of MTAs (4). Marker 
E-ACT/M-CTT-8 explained the highest ratio of the 
phenotypic variation (0.393) in TKW while marker 
E-AGC/M-CTT-2 explained the minimum ratio (0.082) 
of the phenotypic variation obtained for RWL. Three 
MTAs were identified for GY (P<0.001), explaining 
0.15 to 0.309 of the total phenotypic variation; one of 
these was also associated with TKW. Markers E-ACG/
M-CTG-2 (R2=0.336), followed by E-ACT/M-CTT-8 
(with the highest R2) represented the highest tight 
associations with RWL and TKW, respectively. In this 
study, a total of three MTAs were observed for each 
of the traits DTH, SL, DWPS, KPS and FLA. Marker 
E-AGG/M-CTT-24, which was more closely linked to 
PL, was also associated with SB, KPS, and FLA. PH and 
TKW were associated with marker E-ACT/M-CTT-8, 
and DWPS and RWL were associated with marker 
E-ACG/M-CTG-2. The locus E-AGG/M-CTT-16 was 
associated with DTH and FLA, and finally E-ACG/M-
CAA-13 was associated with SL and DWPS.

Comparison of MTAs for GY, KSP, RWC, and TKW 
under various environments
A comparison of the MTAs for GY, KSP, TKW, and 
RWC detected a marker as the most common locus for 
GY, KPS, and RWC under non-stressed conditions. 
Another pleiotropic locus belonged to KPS, GY, KPS 
as well as RWC (Table 7). No common loci were 
identified for GY, KPS, and TKW and some loci for 
GY were independent of KPS, TKW and RWC. Under 

Sub-cluster Genotypes* Membership (%) Expected heterozygosity Mean fixation index 
(Fst) 

1 G2, G4, G5, G6, G7, G8, G9 28 0.12 0.38 
2 G12, G13, G14, G17, G19, G24 24 0.28 0.06 
3 G11, G15, G22, G1 16 0.16 0.4 
4 G16, G18, G20 12 0.15 0.47 
5 G3, G21 8 0.14 0.56 

Table 6. Five sub-clusters with their member genotypes, proportion of membership, expected heterozygosity, and the mean 
fixation values obtained from structure analysis.

* See table 1 for genotypes characteristics.
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Trait 
Non-stressed  Drought-stressed 

Marker P.value R2  Marker P.value R2 

DTH 
E-AGG/M-CTT-16 4.3E-4 0.346  E-ACG/M-CAA-21 2.7E-5 0.225 
    E-AGG/M-CTT-3 2.8E-5 0.233 
    E-AGG/M-CTT-16 1.2E-4 0.128 

PH 

E-AGG/M-CTG-3 5.9E-4 0.079  E-ACT/M-CTT-8 1.5E-4 0.184 
E-ACT/M-CTT-8 1.1E-4 0.171  E-ACT/M-CTC-2 5.2E-4 0.262 
E-ACT/M-CTC-2 4.8E-5 0.276     
E-AGG/M-CTT-3 1.1E-4 0.159     
E-ACT/M-CTT-9 2.2E-4 0.081     

SL 

E-AGG/M-CTT-14 7.2E-4 0.179  E-AGG/M-CTC-3 1.4E-5 0.273 
E-ACT/M-CTT-7 2.6E-4 0.239  E-ACG/M-CAA-14 4.8E-5 0.153 
E-AGG/M-CTT-17 4E-4 0.157  E-ACG/M-CAA-13 5.6E-5 0.155 
E-AGG/M-CTC-4 9.8E-4 0.086     

DWPS E-AGC/M-CTT-7 6.9E-4 0.097  E-ACG/M-CTG-2 1.2E-4 0.108 
E-ACT/M-CTC-11 1.9E-4 0.357  E-AGG/M-CTT-25 1.3E-4 0.310 

KPS 
E-ACT/M-CTC-11 4.3E-4 0.337  E-AGG/M-CTT-24 2.6E-5 0.351 
E-AGG/M-CTT-24 5.8E-4 0.267  E-ACG/M-CAA-6 1.1E-4 0.126 
E-AGG/M-CTG-17 9.7E-4 0.078  E-ACG/M-CAA-20 3.3E-4 0.147 

PL 
E-ACT/M-CTC-11 2.3E-5 0.382  E-ACT/M-CTC-11 1E-5 0.279 
E-AGG/M-CTT-24 1.1E-4 0.132  E-AGG/M-CTT-24 3.5E-6 0.3 
E-AGG/M-CTG-8 5.6E-5 0.118     

PW 
E-ACG/M-CAA-9 5.4E-5 0.097  -   
E-ACG/M-CAA-5 8.6E-5 0.072     
E-ACT/M-CTC-11 3E-5 0.357     

FLA 
E-ACT/M-CTC-11 6.6E-4 0.387  E-AGG/M-CTT-16 2.3E-4 0.359 
E-ACG/M-CAA-4 6.8E-4 0.174  E-AGG/M-CTT-24 8.6E-4 0.165 
E-AGG/M-CTT-14 8.7E-4 0.146  E-AGG/M-CTG-10 9.5E-4 0.125 

RWC 
E-ACT/M-CTT-4 5.5E-5 0.219  E-ACG/M-CAA-2 9.8E-4 0.366 
E-AGG/M-CTT-24 3.8E-5 0.204     
E-ACT/M-CTC-11 2.5E-4 0.141     
E-ACT/M-CTT-7 5.2E-4 0.103     

RWL 
-    E-ACG/M-CTG-2 1.3E-6 0.336 
    E-AGC/M-CTT-7 5.3E-6 0.144 
    E-ACT/M-CTT-9 4E-6 0.116 
    E-AGC/M-CTT-2 5.8E-6 0.082 

TKW E-ACT/M-CTT-8 1.6E-4 0.323  E-ACT/M-CTT-8 2.1E-6 0.393 
    E-ACG/M-CAA-20 5.6E-6 0.142 

SB 
E-ACG/M-CAA-13 3.1E-4 0.214  E-AGG/M-CTT-24 1.2E-4 0.281 
E-ACG/M-CAA-11 3.8E-4 0.108     
E-ACT/M-CTT-7 4.2E-4 0.119     

GY 

E-ACT/M-CTC-4 9.8E-4 0.136  E-ACG/M-CAA-20 5.2E-5 0.309 
E-ACT/M-CTC-11 5.1E-4 0.223  E-AGG/M-CTT-6 4.8E-5 0.15 
E-AGG/M-CTG-17 6.7E-4 0.145  E-AGG/M-CTG-16 4.9E-4 0.17 
E-AGC/M-CTT-6 6.6E-4 0.135     

Table 7. AFLP markers with high association with morpho-physiological traits under non-stress and drought-stress conditions 
using mixed linear model (MLM) in wheat genotypes.

DTH: Number of days to heading, PH: Plant height, SL: Spike length, DWPS: Dry weight per spike, KPS: Number of kernels 
per spike, PL: Peduncle length, PW: Peduncle weight, FLA: Flag leaf area, RWC: Relative water content, RWL: Relative water 
loss, TKW: Thousand kernel weight, SB: Shoot biomass, GY: Grain yield, R2: Phenotypic variation explained by marker.
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drought stress, one common locus was detected for 
GY, TKW, and KPS. Marker E-ACT/M-CTC-11 was 
associated with GY, RWC, PW, KPS, and DWPS under 
non-stressed condition as well as PL under both drought-
stressand non-stress conditions. Moreover, KPS and 
PL under both non-stress and drought conditions as 
well as RWC under non-stressconditions and SB and 
FLA under stress conditions were associated with the 
marker E-AGG/M-CTT-24. In the resent study, Marker 
AGG/M-CTT-16 for DTH and Marker ACT/M-CTT-8 
for PH and TKW, were the common marker under 
either of non-stressed and drought conditions. For 
all two environments, the most common marker for 
different traits was E-AGG/M-CTT-24. All evaluated 
traits were displayed via at least one significant 
trait-specific MTA under both of the two moisture?? 
Irrigation? regimes.

DISCUSSION
The wide genetic diversity of wheat genotypes 
assessed in the present study for morpho-physiological 
traits showed that selection for drought adapted 
genotypes was possible in the studied germplasm. 
All evaluated traits were significantly reduced under 
drought stress as compared with non-stress conditions 
approving that traits have phenotypic flexibility. This 
flexibility could be used to improve wheat drought 
tolerance to reduce water deficiency (Dalal et al., 
2017). In the present study, we obtained the highest 
ratio of CVg/CVe for KPS, followed by TKW under 
both environmental conditions, revealing the existence 
of a wide genetic diversity and good genetic gain 
by selection. H2 estimates varied from low to high 
heritability, indicating the genetic instability of these 
traits between environmental conditions. Similar H2s 
have been reported for most of the respective traits in 
previous research studies (Sehgal et al., 2017; Bhatta et 
al., 2018; Mohammadi et al., 2018; Shamuyarira et al., 
2019; Sun et al., 2019; Bhatta et al., 2020; Gao et al., 
2021). A significant reduction in grain yield heritability 
was also reported under drought conditions in line with 
Dodig et al. (2012), Mathew (2018), Sukumaran et al. 
(2018a) and Said et al. (2022) findings. The grain yield 
has been shown to be a complex trait and its heritability 
is severely reduced under stress (Eid, 2009). High broad 
sense heritability (>50%) estimates were obtained 
between the studied traits approving the validity of the 
data in the present marker-trait association mapping. 
This is supported by Alqudah et al. (2020) and Bhatta 
et al. (2020) who explained the relation of traits that 
had high heritability for QTL analyses.

Although the average polymorphic value in present 
study was high (93.14%), however, the mean number 
of the polymorphic bands per primer sets (14.88) was 
moderate as compared with prior research studies such 
as Roncallo et al. (2019) that identified 30 polymorphic 
bands per combination in their AFLP analysis of durum 
wheat collection. These differences can be attributed to 
factors such as the variety and size of the accessions, 
the method of detection and the evaluation of the length 
of the amplified fragments. The number of amplified 
alleles from each loci is directly influenced by the 
degree of heterozygosity, genotypic frequency, and the 
polymorphism index content (Mohammadi Maibody 
and Golkar, 2019). Nevertheless, Ejaz et al. (2015) 
detected 113 polymorphic band with a mean of 8.7 per 
primer in their study on wheat genotypes. Actually, the 
association between genotypes, their origins, genetic 
similarity, and other factors could be effective in 
analyzing genetic polymorphism. According to Balta 
et al. (2014), in wheat AFLP analysis, one of the 
EcoRI/MseI primer pairs often revealed the highest 
polymorphism. Diversity index estimates for AFLP 
primer sets exhibited that E-ACT/M-CTT and E-AGG/
M-CTC combinations had better marker performance 
based on higher PIC, Shannon index, and He values. 
Since, the maximum PIC values for dominant markers 
such as AFLP are reported 0.5 (Roldan-Ruiz, 2000), in 
this research, four primer pairs revealed PIC estimate 
≥0.3. In the present research, the Shannon index was 
positively correlated with PIC, showing that the highest 
values of respective parameters can be used as a criterion 
for selection of the best primer set. Considering the 
results of allele diversity, AFLP has a high potential for 
distinction of wheat genotypes because accessibility 
of high numbers of polymorphic bands enables the 
effective assessment of genetic variation. These results 
are consistent with other reports on AFLP markers as 
an appropriate marker for detecting the differentiation 
of various plants (Kumar et al., 2015; Saeed and 
Darvishzadeh, 2016; Ebrahimi et al., 2017; Jamali et 
al., 2017; Giordani et al., 2019; Archangi et al., 2019; 
Yazdizadeh et al., 2020). According to Roncallo et al. 
(2019), the AFLP markers have a better capability than 
the SNP markers to distinguish sister lines and have a 
greater degree of resolution.

Genetic associations in the studied wheat genotypes 
were evaluated through various statistical ways to 
recognize genetic variation level and population 
structure. According to the method of Evanno et 
al. (2005), the wheat genotypes divided based on 
K values into five separate main clusters. Wright’s 
F-statistics (Fst) related with the five subpopulations 
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varied from 0.06 to 0.56, supporting a potentially 
distinction between the clusters and existence of 
genetic structure. The obtained population structure 
and genetic distances among pairs of subpopulations 
also verified the presence of ‘admixed’ and kinship. 
The admixed and kinship patterns observed were 
imputed to participation of common ancestry between 
some of the genotypes (Mathew et al., 2019). For 
example, genotypes G13, G14, G19 and G23 in sub-
cluster 2 shared a common parent Sabalan. Parent 
Sardari was common for genotypes G11, G15 and 
G22 in sub-cluster 3 and genotype G3 along with 
genotype G21 (with common parent Azar2) were 
assigned to sub-cluster 5. In this study, the results 
derived from the clustering distance-based method and 
those obtained with structure analysis had relatively 
high conformity together and were able to form five 
main clusters. Investigation of population structure 
in wheat collection for purposes such as controlling 
false positive associations between marker loci and 
phenotypic traits, understanding the genetic variation 
between genotypes and assessing heterotic groups 
of wheat germplasm has been highlighted by many 
researchers (Qaseem et al., 2018; Bhatta et al., 2019; 
Rufo et al., 2019; Soumya et al., 2021). Result from 
the AMOVA analyses displayed that genetic variance 
among subpopulations was significant and accounted 
for 18.36% of the total variance of AFLP data. Using 
a various panel of genotypes can prepare more worthy 
conclusion compared with bi-parental populations 
(Vos-Fels et al., 2017) profiting high allelic variation 
(Ayalew et al., 2018).

For complex traits like drought tolerance, the 
knowledge of MTAs can be utilized for MAS breeding 
to enhance the efficiency of selection in segregating 
populations (Bennani et al., 2022). A total of 66 
significant MTAs (P<0.001) were detected using 
MLM models. Drought tolerance is highly affected 
by genotype×environment interaction which is 
explicated by the higher number of significant MTAs 
detected under non-stressed than drought conditions 
(Mwadzingeni et al., 2017). Higher MTAs were 
detected for evaluated traits under non-stressed in 
comparison with stress conditions, which indicated 
that traits were likely controlled by a greater number 
of different genes under non-stress conditions than 
drought conditions. In the current study, comparison 
of association analysis by GLM and MLM procedures 
under non-stress and drought-stress conditions showed 
that the number of significant markers was reduced in 
the MLM. According to Guo et al. (2015), Giordani et 
al. (2019) and Kumar et al. (2022), the MLM has more 

power than the GLM model due to the lower false 
positive MTAs. Thus, the AFLP markers identified 
based on the MLM can be considered the most 
interesting candidate markers for future studies. Due to 
differences in structure of the population, environmental 
conditions and the methods of QTLs detection, it 
might be difficult to compare QTLs identified in this 
study with those previously reported (Lakew et al., 
2013). Most of the detected MTAs were different 
under non-stress and drought conditions. It shows 
the influence of environment on the traits, that shows 
why; different QTLs were detected under different 
environments (Abou-Elwafa and Shehzad 2020; 
Negisho et al., 2022). Marker E-ACG/M-CAA-20 was 
closely linked to GY also presented highly significant 
relationships with TKW and KPS under drought 
conditions. Identification of common markers is very 
important in plant breeding, because simultaneous 
selection of numerous traits is possible (Guo et al., 
2018). Furthermore, the markers that exhibit powerful 
effects on the traits represent ideal candidates for future 
research studies using MAS. Genotypes with high GY, 
KPS, and TKW are targeted by wheat breeding; thus, if 
the effectiveness of these loci in the genetic control of 
respective traits is approved, they could be useful tools 
for wheat molecular breeding programs for enhancing 
drought tolerance. The common MTAs observed for 
GY, RWC, PL, KPS, and TKW, and unique MTAs 
detected for any trait, suggesting the traits RWC, PL, 
KPS, and TKW can be manipulated freely of GY, as 
individual MTAs were found for them under different 
conditions. There are few studies on the identification 
of MTAs in physiological traits such as, FLA, RWC, 
and RWL (Gupta et al., 2012; Bhatta et al., 2018; Lin 
et al., 2019; Ahmed et al., 2022). Khalid et al. (2019) 
in a study on advanced lines derived from synthetic 
hexaploid wheats detected five KASP assays for Ppd1 
homeologous genes were significantly related with 
DTH, GY, RWC, SL, and TKW. In the present study, 
Marker E-ACT/M-CTC-11 was common for GY, KPS, 
RWC, FLA, PL, and PW under non-stress conditions. 
Most functional genes in the genome might contribute 
directly or indirectly to the yield, and most released 
fine-mapped QTLs and the genes detected as affecting 
yield present pleiotropic effects on at least one trait 
(Mangini et al., 2021). Markers E-ACT/M-CTC-11, 
E-AGG/M-CTTT-24, and E-ACT/M-CTT-8 showed 
significant associations with several traits including 
GY, RWC, KPS, PL, and SB. Association between a 
single marker and various phenotypes could be due to 
pleiotropic effects or closely linked genes influencing 
diverse traits synchronously. In fact, most of complex 
traits display linkage and selection of pleiotropic genes 
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cause major synchronous changes in the traits (Touzy 
et al., 2022).

The common genetic markers for DTH, PH, TKW, 
PL, and KPS were observed under stress and non-stress 
conditions. This demonstrates that the genetic basis of 
respective traits was assigned by a similar mechanism in 
both environmental conditions. An earlier research on 
durum wheat using drought-stress and yield potential 
environments, the common genetic markers for TKW 
and grain number m−2 were identified on chromosomes 
2A and 2B under DT and YP conditions (Sukumaran 
et al., 2018a). Ideally, the effects of these genomic 
regions may not be affected by the environmental 
variation. Such loci could be effective in MAS or gene 
introgression when breeding for wide compatibility 
(Sukumaran et al., 2018b). Plant height is reported to 
be a serious morphological trait in wheat for improving 
dwarf varieties with high harvest index, and its relation 
with the yield component traits could be important 
for indirect selection through plant height (Thomas, 
2017). Therefore, markers associated with plant height 
can also be desirable candidates for efficient wheat 
breeding efforts. The AFLP markers could be changed 
into sequence characterized amplified region (SCAR) 
markers that have advantages such as, detection as 
separate bands in agarose gels, easy scoring, less 
sensitivity to reaction conditions, and high repeatability 
(Wei et al., 2009). 

In conclusion, the results of the present study 
represented that AFLP markers have a considerable 
potential for association analysis especially for multi-
environment experiments including contrasting water 
regimes. This study detected a total of 66 highly 
significant MTAs under non-stressand drought-stress 
conditions. Under non-stress conditions Marker E-ACT/
M-CTC-11 was associated with GY, PL, PW, RWC, KPS 
and FLA. Marker E-ACG/M-CAA-20 was associated 
with GY, TKW and KPS under stress conditions. 
The significant MTAs identified would be beneficial 
for MAS and trait introgression in wheat breeding 
programs to develop drought-tolerant genotypes for 
arid and semi-arid areas, and for fine mapping and 
cloning of the fundamental genes and QTL. However, 
the markers detected should be accredited by testing 
their effectiveness in the identification of the target 
phenotypes in larger populations and different genetic 
backgrounds, supporting by the multiple loci mixed 
model (MLMM) as suggested by Segura et al. (2012).
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Figure S1. Monthly patterns of temperature of air and rainfall recorded during the course of the experiment.

df: Degree of freedom, MS: Mean of squares, ** Significant at 1% level of probability.

Table S1. Analysis of molecular variance for five subpopulations derived from structure analysis in wheat genotypes using 
AFLP markers.

Source of variation df 
Mean of square 

MS Est. variance Variance (%) PhiPT 

Among subpopulations 4 40.603 4.449 18.36 0.184** 
Within subpopulations 20 19.783 19.783 81.64  
Total 24  24.232 100  
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Figure S2. The Delta K calculated by the Evanno method displaying the classification of the population into five main clusters.


