تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,471 |
تعداد دریافت فایل اصل مقاله | 2,845,929 |
Expression of genes involved in drought stress in two soybean cultivars (Glycine max) treated with methyl jasmonate and salicylic acid | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 11، شماره 2 - شماره پیاپی 22، دی 2022، صفحه 1-15 اصل مقاله (1.23 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.18366.1335 | ||
نویسندگان | ||
Fatemeh Sadraeifar؛ Masoud Ahmadi-Afzadi* ؛ Saeid Mirzaei؛ Maryam Abdoli Nasab | ||
Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. | ||
تاریخ دریافت: 14 خرداد 1402، تاریخ بازنگری: 30 تیر 1402، تاریخ پذیرش: 15 مرداد 1402 | ||
چکیده | ||
Soybean (Glycine max) is one of the most important oilseed crops in the world. However, its cultivation is limited in many areas with water shortage, and is affected by drought. This study investigated the expression of genes involved in drought stress in two soybean cultivars, i.e. Williams (tolerant) and L17 (sensitive) after drought stress and treatment with methyl jasmonate (MeJA) and salicylic acid (SA). In addition, the impact of drought and hormone treatments were validated with morpho-physiological evaluation of these two cultivars. Experiment was conducted in a factorial basis with completely randomized design. The results showed that the expression of basic-leucine zipper (BZIP19), NAM-ATAF1, 2-CUC2 (NAC), dehydration-responsive element-binding (DREB1), and vascular plant one zinc finger protein (VOZ1G) was higher in the resistant cultivar, i.e. Williams. Gene expression was induced after simultaneous application of SA and MeJA in Williams cultivar. According to the morpho-physiological results, plant height and root length, fresh and dry weight of roots and shoots, nodes and number of lateral roots, number of pods and number of seeds per pod, leaf area, and percentage of relative leaf moisture, number of stem nodes and internode distance, pod weight and harvest index were significantly different between the two cultivars. Increase in the expression of VOZ gene, under treatment with SA was more effective on shoot height and nodule formation of Williams than in L17. Results of this investigation should be useful for developing tools for breeding new soybean genotypes with an improved tolerance to drought. | ||
کلیدواژهها | ||
BZIP؛ DREB؛ Methyl jasmonate؛ Salicylic acid؛ Soybean؛ VOZ | ||
عنوان مقاله [English] | ||
بیان ژن های درگیر در تنش خشکی در دو رقم سویا پس از تیمار با متیل جاسمونات و اسید سالیسیلیک | ||
نویسندگان [English] | ||
فاطمه صدرایی فر؛ مسعود احمدی-افزدی؛ سعید میرزایی؛ مریم عبدلی نسب | ||
گروه پژوهشی بیوتکنولوژی، پژوهشکده علوم محیطی ، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران. | ||
چکیده [English] | ||
سویا )گلیسین ماکس( یکی از مهم ترین محصولات دانه روغنی در جهان است. در حالیکه کشت و کار این گیاه در مناطق بسیاری از دنیا به دلیل کمبود آب و خسارت ناشی از خشکی محدود می باشد. این مطالعه بیان ژنهای دخیل در تنش خشکی را در دو رقم سویا یعنی ویلیامز (متحمل) و L17 (حساس) پس از تنش خشکی و تیمار با متیل جاسمونات (MeJA) و اسید سالیسیلیک (SA) بررسی کرد. همچنین تأثیر تیمارهای خشکی و هورمونی با ارزیابی مورفوفیزیولوژیکی این دو رقم تأیید شد. آزمایش به صورت فاکتوریل در قالب طرح کاملا تصادفی انجام شد. نتایج نشان داد که بیان BZIP19، NAC8، DREB1 و VOZ1G در رقم مقاوم یعنی ویلیامز بیشتر است. بیان همه ژن ها پس از کاربرد همزمان SA و MeJA در رقم ویلیامز القا شد. با توجه به نتایج مورفوفیزیولوژیکی، ارتفاع بوته و طول ریشه، وزن تر و خشک ریشه و اندام هوایی، تعداد گره و تعداد ریشه های جانبی، تعداد غلاف و تعداد دانه در غلاف، سطح برگ و درصد رطوبت نسبی برگ، تعداد گره های ساقه و فاصله بین گره، وزن غلاف و شاخص برداشت بین دو رقم تفاوت معنی داری داشتند. افزایش بیان ژن VOZ تحت تیمار SA بر ارتفاع اندام هوایی و تشکیل گره رقم ویلیامز نسبت به رقم L17 موثرتر بود. نتایج این تحقیق باید برای توسعه ابزارهایی برای اصلاح ژنوتیپ جدید سویا با تحمل بهبود یافته به خشکی مفید باشد. | ||
کلیدواژهها [English] | ||
سویا, سالیسیلیک اسید, متیل جاسمونات, BZIP, VOZ, DREB | ||
مراجع | ||
Ashraf C., and Abu‐Shakra S. (1978(. Wheat seed germination under low temperature and moisture stress. Agronomy Journal, 70(1): 135-139. Agarwal P. K., Agarwal P., Reddy M. K., and Sopory S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25: 1263-1274. Bartels D., and Sunkars R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Science, 24: 23-58. Cai H., Sun N., and Song T. (2018). Modification of GsDREB2 from Glycine soja increases plant tolerance to salt and osmotic stress. Acta Prataculturae Sinica, 27(6): 168-176. Bray D. (2000). Cell movements: from molecules to motility. Garland Science, New York, pp. 386. DOI: 10.4324/9780203833582. Chen D., Chai S., McIntyre C. L., and Xue G. P. (2018). Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Reports, 37(2): 225-237. Chakraborty S., Gangwar R., and Zahra S. (2023). Genome-wide characterization and comparative analysis of the OSCA gene family and identification of its potential stress-responsive members in legumes. Scientific Reports, 13: 5914. Chitkara P., Poddar N., Singh A., and Kumar S. (2022). BURP domain-containing genes in legumes: Genome-wide identifcation, structure, and expression analysis under stresses and development. Plant Biotechnology Reports, 16: 369-388. Chamkhi I., Cheto S., Geistlinger J., Zeroual Y., Kouisni L., Bargaz A., and Ghoulam C. (2022). Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Industrial Crops and Products, 183: 114958. Chakraborty S., Soudararajan P., and Kumar S. (2022). Genome-wide identification, characterization, and expression profiling of 14-3-3 genes in legumes. Plant Biotechnology Reports, 16: 579-597. De Leonardis A., Macciola V., Lembo G., Aretini, A., and Nag A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chemistry, 100(3): 998-1004. Fatema M. K., Mamun M. A. A., Sarker U., Hossain M. S., Mia M. A. B., Roychowdhury R., Ercisli S., Marc R. A., Babalola O. O., and Karim M. A. (2023). Assessing morpho-physiological and biochemical markers of soybean for drought tolerance potential. Sustainability, 15(2): 1427. Gasic K., Hernandez A., and Korban S. S. (2004). RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter, 22(4): 437-438. Hou Z., Li Y., Cheng Y., Li W., Li T., Du H., Kong F., Dong L., Zheng D., Feng N., Liu B., and Cheng Q. (2022). Genome-wide analysis of DREB genes identifies a novel salt tolerance gene in wild soybean (Glycine soja). Frontiers in Plant Science, 13: 821647. Hussain R. M., Ali M., Feng X., and Li X. (2017). The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biology, 17(1): 1-11. Kamrava S., and Nadali B. (2016). Evaluation of some soybean genotypes (Glycine max) under salt stress. Journal of Crop Breeding, 8(18): 30-36. Koguchi M., Yamasaki K., Hirano T., and Sato M. H. (2017). Vascular plant one-zinc-finger protein 2 is localized both to the nucleus and stress granules under heat stress in Arabidopsis. Plant Signaling and Behavior, 12(3): e1295907. Kumudini S., Hume D. J., and Chu G. (2001). Genetic improvement in short season soybeans: I. Dry matter accumulation, partitioning, and leaf area duration. Crop Science, 41(2): 391-398. Le Hir H., Nott A., and Moore M. J. (2003). How introns influence and enhance eukaryotic gene expression. Trends in Biochemical Sciences, 28(4): 215-220. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., and Shinozaki K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391-1406. Lan Y., Pan F., Zhang K., Wang L., Liu H., Jiang C., Chen F., Wu M., and Xiang Y. (2023). PhebZIP47, a bZIP transcription factor from moso bamboo (Phyllostachys edulis), positively regulates the drought tolerance of transgenic plants. Industrial Crops and Products, 197: 116538. Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H., Shimada Y., Yoshida S., Shinozaki K., and Yamaguchi‐Shinozaki K. (2004). Identification of cold‐inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The Plant Journal, 38(6): 982-993. Mitsuda N., Hisabori T., Takeyasu K., and Sato M. H. (2004). VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana. Plant and Cell Physiology, 45(7): 845-854. Menkens A. E., Schindler U., and Cashmore A. R. (1995). The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends in Biochemical Sciences, 20(12): 506-510. Nevo E., and Chen G. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell and Environment, 33(4): 670-685. Nakashima K., and Yamaguchi-shinozaki K. (2005). Molecular studies on stress-responsive gene expression in Arabidopsis and improvement of stress tolerance in crop plants by regulon biotechnology. Japan Agricultural Research Quarterly: JARQ, 39(4): 221-229. Nakai Y., Nakahira Y., Sumida H., Takebayashi K., Nagasawa Y., Yamasaki K., Akiyama M., Ohme‐Takagi M., Fujiwara S., Shiina T., and Mitsuda N. (2013). Vascular plant one‐zinc‐finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. The Plant Journal, 73(5): 761-775. Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9): e45-e45. Ritchie S. W., Nguyen H. T., and Holaday A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1): 105-111. Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C. Z., Keddie J., Adam L., Pineda O., Ratcliffe O. J., Samaha R. R., and Creelman R. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290(5499): 2105-2110. Suprunova A., Krugman T., Fahima T., Chen G., Shams I., Korol A., and Nevo E. (2004). Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant, Cell and Environment, 27: 1297-1308. Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 18(5): 1292-1309. Shinozak K., Yamaguchi-Shinozaki K., and Seki M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5): 410-417. Selote D., Matthiadis A., Gillikin J. W., Sato M. H., and Long T. A. (2018). The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors. Plant, Cell and Environment, 41(10): 2463-2474. Sasi M., Awana M., Kumar M., Tyagi A., Kumar S., Sathee L., Krishnan V., Praveen Sh., and Singh A. (2021). Plant growth regulator induced mitigation of oxidative burst helps in the management of drought stress in rice (Oryza sativa L.). Environmental and Experimental Botany, 185: 104413. Thomashow M. F. (1999). Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Biology, 50(1): 571-599. Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K., and Yamaguchi-Shinozaki K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences, 97(21): 11632-11637. Uluisik S., Kiyak A., Kurt F., and Filiz E. (2022). Genome-wide identification of the VOZ transcription factors in tomato (Solanum lycopersicum): their functions during fruit ripening and their responses to salinity stress. The Journal of Horticultural Science and Biotechnology, 98(4): 468-482. Verma V., Ravindran P., and Kumar P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1): 1-10. Wang Z., Cheng K., Wan L., Yan L., Jiang H., Liu S., Lei Y., and Liao B. (2015). Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics, 16(1): 1-15. Wang M., Ren L. T., Wei X. Y., Ling Y. M., Gu H. T., Wang S. S., Ma X. F., and Kong G. C. (2022). NAC transcription factor TwNAC01 positively regulates drought stress responses in Arabidopsis and Triticale. Frontiers in Plant Science, 13: 877016. Wang Z., Zhu J., Yuan W., Wang Y., Hu P., Jiao C., Xia H., Wang D., Cai Q., Li J., Wang, C., Zhang X., Chen Y., Wang Z., Ou Z., Xu Z., Shi J., and Chen J. (2021). Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas. International Journal of Biological Macromolecules, 181: 1207-1223. Xiong L., and Zhu J. K. (2001). Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiologia Plantarum, 112(2): 152-166. Xiaoshuang W., Yu F., Renjie Y., Lei W., Zhihai W., Ping Tian., Siyuan L., Xue Y., and Meiying Y. (2022). Comprehensive sequence and expression profle analysis of the phosphate transporter gene family in soybean. Scientific Reports, 12: 20883. Yamaguchi-Shinozaki K., and Shinozaki K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science, 10(2): 88-94. Yahoueian A., Seied H., and Pooya A. (2018). Overexpression of the StP5CS gene promotes nodulation and nitrogen fixation in vegetable soybean under drought stress. Legume Research-an International Indian Journal, 42(5): 603-608. Yang X., Lu M., Wang Y., Liu Zh., and Chen Su. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3): 50. Yang J., Lan L., Jin Y., Yu N., Wang D., and Wang E. (2022). Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Biology, 64(2): 244-267. Yang C., Huang Y., Lv W., Zhang Y., Bhat J. A., Kong J., Xing H., Zhao J., and Zhao T. (2020). GmNAC8 acts as a positive regulator in soybean drought stress. Plant Science, 293: 110442. Zhu J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2): 313-324. | ||
آمار تعداد مشاهده مقاله: 249 تعداد دریافت فایل اصل مقاله: 214 |