تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,251,473 |
تعداد دریافت فایل اصل مقاله | 2,845,929 |
سنتز سبز نانوذرات مس و اکسید مس با استفاده از عصاره آبی گیاه برگ بو و بررسی اثر ضد میکروبی آنها | ||
پژوهش های پیشرفته در گیاهان دارویی | ||
دوره 2، شماره 1 - شماره پیاپی 2، خرداد 1402، صفحه 61-76 اصل مقاله (1.6 M) | ||
نوع مقاله: مقاله علمی- پژوهشی | ||
شناسه دیجیتال (DOI): 10.30479/armp.2023.18929.1019 | ||
نویسندگان | ||
مینا جم زاد* 1؛ پانته آ سادات میرخانی2 | ||
1استادیار، گروه شیمی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران | ||
2دانشجوی کارشناسی ارشد، گروه شیمی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران | ||
تاریخ دریافت: 25 خرداد 1402، تاریخ بازنگری: 29 تیر 1402، تاریخ پذیرش: 11 شهریور 1402 | ||
چکیده | ||
در پژوهش حاضر، از عصاره های آبی برگ و میوه گیاه برگ بو (Laurus nobilis L.) به همراه نمکهای نیترات و سولفات مس، به ترتیب برای سنتز نانوذرات مس (Cu) و اکسید مس (CuO) استفاده شده است. از تکنیکهای طیف سنجی ماورای بنفش- مرئی(UV-Vis)، مادون قرمز(FT-IR)، پراش اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی(SEM)، میکروسکوپ الکترونی عبوری (TEM)و طیف سنجی پراکندگی انرژی اشعه ایکس (EDAX) برای مشخصه یابی نانوذرات استفاده گردید. جذب مشاهده شده در طول موجهای ۸۰۳ و577 نانومتردر طیف UV-Vis، به ترتیب نشان دهنده تشکیل نانوذرات مس و اکسید مس (I) بوده و همچنین جذبهای مشاهده شده در فرکانسهایcm-1 (6۲۶ و ۴۶۵) در طیفFT-IR، تشکیل اکسید مس را تاًیید کرد. نتایج به دست آمده ازXRD نشان دهنده تشکیل کریستالهای مس و اکسید مس در اندازههای به ترتیب ۹۷/۱۱ و ۵۷/۴۲ نانومتر بود. در تصاویر میکروسکوپهای الکترونی، ساختار نانوذرات به شکل تقریباً کروی و با میانگین اندازه ۱۵ نانومتر و همراه با تجمعهای خوشهای شکل دیده شد. بررسی خواص ضد میکروبی نانو ذرات تشکیل شده نشان داد که نانوذرات مس بیشترین اثر بازدارندگی را بر باکتریStreptococcus group A(+) و قارچ Aspergillus flavus داشته و نانوذرات اکسید مس در مهار رشد باکتری(-) Klebsilla oxytoca موثرتر بوده است. | ||
کلیدواژهها | ||
پراش اشعه ایکس؛ خاصیت ضد میکروبی؛ گیاه برگ بو؛ میکروسکوپ الکترونی؛ نانوذرات اکسید مس | ||
عنوان مقاله [English] | ||
Green synthesis of Copper and Copper Oxide nanoparticles by the aqueous extract of Laurus nobilis L. and evaluation of the antimicrobial activity | ||
نویسندگان [English] | ||
Mina Jamzad1؛ Pantea Sadat Mirkhani2 | ||
1Assistant Professor, Dept. of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran | ||
2M.Sc. Student, Dept. of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
In this project, we have synthesized copper and copper (I) oxide nanoparticles (NPs) by Laurus nobilis L. aqueous extract and using the precursors Cu (NO3)2. 3H2O, and CuSO4. 5H2O respectively. The synthesized NPs were characterized using the techniques UV-Vis and FT-IR spectroscopy, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDAX). The absorption peaks at (803 and 577) nm in UV-Vis spectra, showed the formation of copper and copper oxide (I), respectively. The bands at 626 and 465 cm−1 in the FT-IR spectra, corresponding to the Cu–O vibration, corroborated the formation of copper oxide NPs. XRD results confirmed the phases of Cu2O and Cu (42.57 and 11.97) nm for the synthesized nano-crystalines, respectively. Electron microscopy images showed the particles to be nanoscale, with an average of 15 nm and almost spherical shapes aggregated like clusters. The antimicrobial assay showed that Cu-NPs had the highest inhibitory effect on Aspergillus flavus (15 mm) and Streptococcus group A (14 mm), while Cu2O-NPs were more effective on Klebsiella oxytoca (20 mm). Moreover, the plant extract was only effective on the bacteria Streptococcus group A with a zone of growth inhibition of 11mm. | ||
کلیدواژهها [English] | ||
X-ray diffraction, Antimicrobial activity, Laurus nobilis, Electron Microscopy, Copper oxide nanoparticles | ||
مراجع | ||
Abdullah JAA, Salah Eddine L, Abderrhmane B, Alonso-González M, Guerrero A, Romero A. 2020. Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustainable Chemistry and Pharmacy 17: 100280. Abu-Dahab R, Kasabri V, Afifi FU. 2014. Evaluation of the volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae) on breast cancer cell line models. Records of Natural Products 8: 136-147. Ahmed S, Annu S, Yudha SS. 2016. Biosynthesis of gold nanoparticles: a green approach. Journal of Photochemistry and Photobiology B: Biology 161: 141-153. Al-Ghamdi AY. 2017. Soil Microbial Biomass of Pea (Pisium sativum cv. Little Marvel) in Response to Three Atmospheric Air Regimes at Al Baha Region, KSA. American Journal of Climate Change 6 (4): 607-621. Alshammari SO, Mahmoud SY, Farrag ES. 2023. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications. Molecules 28 (12): 4629. Ameen F, Alsamhary KI, Alabdullatif JA, AL Nadhari S. 2021. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety 213: 112027. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. 2017. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matterial 29 (20): 203002. Bahmanzadegan A. 2015. Seasonal Variation in Volatile Oil, Polyphenol Content and Antioxidant Activity in Extract of Laurus nobilis Grown in Iran. Journal of Pharmacy and Pharmacology 3 (5): 223-231. Bahrami A, Jamzad M, Sedaghat S. 2021. Phytochemicals and Biological Activities of Froriepia subpinnata (Ledeb.) Baill. Extracts. Journal of Medicinal Plants and By-products 10 (1): 109-115. Barrett CS, Massalski TB. 1966. Structure of Metals, 3rded. McCraw-Hill, New York, 251-254. Barroso A, Mestre H, Ascenso A, Simões S, Reis C. 2020. Nanomaterials in wound healing: from material sciences to wound healing applications. Nano Select 1 (5): 443-460. Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45 (4): 493-506. Beena J, Anjali PS. 2018. Synthesis and characterization of Iron nanoparticles using Artocarpus heterophyllus Tender leaf extract and evaluation of cytotoxic activity. World Journal of Pharmaceutical Research 7 (2): 657-673. Behera M, Giri G. 2014. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant. Materials Science-Poland 32: 702-708. Berra D, Salah Eddine L, Boubaker B, Mohammed Riha O, Berani D, Achor R. 2018. Green synthesis of copper oxide nanoparticles by Phoenix dactylifera L. leaves extract. Digest Journal of Nanomaterials and Biostructures 13 (4): 1231-1238. Beveridge TJ, Murray RG. 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology 141: 876-887. Bulut Kocabas B, Attar A, Peksel A, Altikatoglu Yapaoz M. 2021. Phytosynthesis of CuONPs via Laurus nobilis: Determination of antioxidant content, antibacterial activity, and dye decolorization potential. Biotechnology and Applied Biochemistry 68 (4): 889-895. Caputo L, Nazzaro F, Souza LF, Aliberti L, De Martino L, Fratianni F, Coppola R, De Feo V. 2017. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules 22 (6): 930. Da Silveira SM, Luciano FB, Fronza N, Cunha A, Scheuermann GN, Vieira CRW. 2014. Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C. LWT - Food Science and Technology 59 (1): 86-93. Desalegn T, Murthy HCA, Ravikumar C, Nagaswarupa HP. 2021. Green Synthesis of CuO Nanostructures using Syzygium guineense (Willd.) DC Plant Leaf Extract and Their Applications. Journal of Nanostructure 11 (1): 81-94. Devika R, Chauhan S, Subbaiya R. 2019. Biosynthesis of copper nanoparticle using Nerium oleander. Research Journal of Pharmacology and Technology 12: 621-624. Dobroslavić E, Elez Garofulić I, Zorić Z, Pedisić S, Dragović-Uzelac V. 2021. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 9: 1840. Dorman HJ, Deans SG. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology 88 (2): 308-316. Elia P, Zach R, Hazan S, Kolusheva S, Porat Z, Zeiri Y. 2014. Green synthesis of gold nanoparticles using plant extracts as reducing agents. International Journal of Nanomedicine 9 (1): 4007-4021. Emami-Karvani Z, Chehrazi P. 2011. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research 5(12): 1368-1377. Ermini ML, Valerio V. 2021. Antimicrobial Nano-Agents: The Copper Age. ACS Nano 15 (4): 6008-6029. Faisal S, Jan H, Ali Shah S, Shah S, Thea S, Khan A, Rizwan M, Jan F, Wajidullah, Akhtar N, Khattak A, Syed S. 2021. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega 6 (14): 9709-9722. Fakhari S, Jamzad M, Kabiri Fard H. 2019. Green synthesis of zinc oxide nanoparticles: a comparison, Green Chemistry Letters and Reviews 12 (1): 19-24. Faúndez G, Troncoso M, Navarrete P, Figueroa G. 2004. Antimicrobial activity of copper surfaces against suspensions of salmonella enterica and campylobacter jejuni. BMC Microbiology 4: 19. Fidan H, Stefanova G, Kostova I, Stankov S, Damyanova S, Stoyanova A, Zheljazkov VD. 2019. Chemical Composition and Antimicrobial Activity of Laurus nobilis L. Essential Oils from Bulgaria. Molecules 24 (4): 804. Gopalakrishnan K, Ramesh C, Ragunathan V, Tamilselvan M. 2012. Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Digest Journal of Nanomaterials and Biostructures 7: 833-839. Ismail MIM. 2020. Green synthesis and characterizations of copper nanoparticles. Materials Chemistry and Physics 240: 122283. Jamzad M, Kamari Bidkorpeh M. 2020. Green synthesis of Iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of nanostructure in Chemistry 10: 193-201. Jamzad M, Mokhtari B, Mirkhani PS. 2023. Green synthesis of metal nanoparticles mediated by a versatile medicinal plant extract. Chemical Papers 77 (3): 1455-1467. Jan H, Shah M, Andleeb A, Faisal S, Khattak A, Rizwan M, Drouet S, Hano C, Abbasi BH. 2021. Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other In-Vitro Properties. Oxidative Medicine and Cellular Longevity 2021: 4786227. Kalatehjari P, Yousefian M, Khalilzadeh MA. 2015. Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum) eggs. The Egyptian Journal of Aquatic Research 41 (4): 303-306. Kashkouli S, Jamzad M, Nouri A. 2018. Total Phenolic and Flavonoids Contents, Radical Scavenging Activity and Green Synthesis of Silver Nanoparticles by Laurus nobilis L. Leaves Aqueous Extract. Journal of Medicinal Plants and By-products 1: 25-32. Khani R, Roostaei B, Bagherzade G, Moudi M. 2018. Green synthesis of copper nanoparticles by fruit extract of Ziziphus spinachristi (L.) Willd: Application for adsorption of triphenylmethane dye and antibacterial assay. Journal of Molecular Liquids 255: 541-549. Kim JH, Cho H, Ryu SE, Choi MU. 2000. Effects of metals ions on the activity of protein tyrosine phosphate VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Archives of Biochemistry and Biophysics 382: 72-80. Kooti M, Matouri L. 2010. Fabrication of nano-sized cuprous oxide using Fehling’s solution. Transaction F: Nanotechnology 17: 73-78. Kornblatt AP, Nicoletti VG, Travaglia A. 2016. The neglected role of copper ions in wound healing. Journal of Inorganic Biochemistry 161: 1-8. Krithiga N, Jayachitra A, Rajalakshmi A. 2013. Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Indian Journal of Nano Science 1: 6-15. Li M, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Chu PK, Wu S. 2018. Noninvasive rapid bacteria killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomaterial Science 6 (8): 2110-2121. Loo YY, Chieng BW, Nishibuchi M, Radu S. 2012. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. International Journal of Nanomedicine 7: 4263-4267. Luo X, Morrin A, Killard AJ, Smyth MR. 2006. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis 18 (4): 319-326. Marza Hamza N, Malik Yasir S, Abdulsajjad M, Hussain K. 2021. Biological Effects of Aqueous Extract of Laurus noboilis L. Leaves on Some Histological and Immunological Parameters in Male Rat Liver Affected by Aluminum Chloride. Archive of Razi Institute 76 (6): 1745-1753. Maulana I, Fasya D, Ginting B. 2022. Biosynthesis of Cu Nanoparticles Using Polyalthia longifolia Roots Extracts for Antibacterial, Antioxidant and Cytotoxicity Applications. Materials Technology 37 (13): 2517-2521. Mohammed RR, Omer AK, Yener Z, Uyar A, Ahmed AK. 2021. Biomedical effects of Laurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research. Annals of Medicine and Surgery 61: 188-197. Ouibrahim A, Tlili-Ait-Kaki Y, Bennadja S, Amrouni S, Djahoudi AG, Djebar MR. 2013. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African Journal of Microbiology Research 7 (42): 4968-4973. Ozcan B, Esen M, Sangun MK, Coleri A, Caliskan M. 2010. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. Journal of Environmental Biology 31 (5): 637-641. Padma PN, Banu TB, Kumari SC. 2018. Studies on green synthesis of copper nanoparticles using Punica granatum. Annual Research & Review in Biology 23 (1): 1-10. Pedram-Nia A, Mortazavi A, Nemat Shahi MM. 2018. Study of Chemical Compounds and The Antimicrobial Effects of Leaf Extract of Laurus nobilis L. on Various Microbial Strains. Journal of Food Science and Technology 15 (81): 217-226. Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G, Gedanken A. 2009. CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surface Coating Technology 204: 54-57. Petkova Z, Stefanova G, Girova T, Antova G, Stoyanova M, Damianova S, Gochev V, Stoyanova A, Zheljazkov VD. 2019. Phytochemical Investigations of Laurel Fruits (Laurus nobilis). Natural Product Communications 14 (8): 1934578X1986887. Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P. 2012. Biosynthesis of antibacterial gold nanoparticles using brown alga, stoechospermum marginatum (kutzing). Spectrochimica Acta-part A 99: 166-173. Ramos C, Teixeira B, Batista I, Matos O, Serrano C, Neng NR, Nogueira MJF, Nunes ML, Marquez A. 2012. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal, Natural Product Research 26 (6): 518-529. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. 2012. Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters 71: 114-116. Rodríguez-León E, Rodríguez-Vázquez BE, Martínez-Higuera A, Rodríguez-Beas C, Larios- Rodríguez E, Navarro RE, Lopez-Esparza R, Iniguez-Palomares RA. 2019. Synthesis of Gold Nanoparticles Using Mimosa tenuiflora Extract, Assessments of Cytotoxicity, Cellular Uptake, and Catalysis. Nanoscale Research Letters 14 (1): 334. Salvo J, Sandoval C. 2022. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns Trauma 10: tkab047. Sawant SS, Bhagwat AD, Mahajan CM. 2016. Synthesis of Cuprous Oxide (Cu2O) Nanoparticles – a Review. Journal of Nano and Electronic Physics 8: 01035. Sheet AH, AL-Azawi HA. 2022. Antibiotic susceptibility and biofilm formation of Pseudomonas aeruginosa isolated from clinical and environmental hospital samples. Biochemical and Cellular Archives 22: 3501-3509. Shenewer Mahdi Al-Turfi Z, Al-Hadrawy SMJ, Abadi Mohammed J, Chasib Jabal B. 2022. Evaluation of the Effect of Alcoholic Extract of Laurus Nobilis Leaves on Blood Biochemical Parameters and Histological Changes in the Liver and Kidney among Female Wistar Rats Treated with Depakene (Sodium Valproate). Archive of Razi Instituet 77 (3): 981-989. Siriken B, Yavuz C, Güler A. 2018. Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery 5 (11): 374-379. Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M. 2004. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials 25: 2029-2037. Srivata M, Singh J, Mishra RK, Ojha AK. 2013. Electro-optical and magnetic properties of monodispersed colloidal Cu2O nanoparticles. Journal of Alloys and Compounds 555: 123-130. Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine 18 (2): 321-36. Thakur S, Sharma S, Thakur S, Rai R. 2018. Green synthesis of copper nanoparticles using Asparagus adscendens Roxb. root and leaf extract and their antimicrobial activities. International Journal of Current Microbiology and Applied Sciences 7: 683-694. Usmani QI, Ahmad A, Jamaldeen FN. 2021. Laurus nobilis L., (Habb-ul-Ghar), A Review on Phytochemistry, Pharmacology and Ethnomedicinal Uses. Journal of Drug Delivery & Therapeutics 11 (5): 136-144. Vasundhara M, Gujaran S, Jayaram A, Priyanka R. 2016. Sweet bay (Laurus nobilis L.) essential oil: A study on its application in dentistry. Word Journal of Pharmaceutical Research 5: 2049-2057. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. 2016. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy 84: 1213-1222. Yilmaz ES, Timur M, Aslim B. 2013. Antimicrobial, Antioxidant Activity of the Essential Oil of Bay Laurel from Hatay, Turkey. Journal of Essential Oil-bearing Plants 16 (1): 108-116. Yugandhar P, Vasavi T, Maheswari Devi PU, Savithramma N. 2017. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: Characterization and evaluation of its synergistic antimicrobial and anticancer activity. Applied Nanoscience 7: 417-427. Zargari A. 1997. Medicinal plants. 7th Edition, Tehran University Publications, Vol. 4, pp. 136. Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, Nilforoushzadeh MA, Saeb MR, Hamblin MR, Mozafari M. 2017. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine (Lond), 12 (19): 2403-2422. Zolfaghari B, Samsam-Shariat S, Ghannadi A. 2013. Chemical composition of volatile oils from the endocarp and hulls of Persian bay laurel fruit: A fragrant herb used in traditional Iranian medicine. Journal of Reports in Pharmaceutical Sciences 2: 1-4. Zen JM, Hsu CT, Kumar AS, Lyuu HJ, Lin Y. 2004. Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst 129 (9): 841-845. | ||
آمار تعداد مشاهده مقاله: 553 تعداد دریافت فایل اصل مقاله: 543 |