تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,793 |
تعداد دریافت فایل اصل مقاله | 2,844,968 |
Anti-VEGFR2 protein accumulation under the influence of methyl jasmonate treatment in Brassica napus and Nicotiana benthamiana plants | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 11، شماره 2 - شماره پیاپی 22، دی 2022، صفحه 59-67 اصل مقاله (725.98 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.18804.1341 | ||
نویسندگان | ||
Mahsa Sadri1؛ Mokhtar Jalali Javaran* 1؛ Mojgan Soleimanizadeh2 | ||
1Department of Agriculture Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. | ||
2Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran. | ||
تاریخ دریافت: 08 خرداد 1402، تاریخ بازنگری: 03 مهر 1402، تاریخ پذیرش: 03 مهر 1402 | ||
چکیده | ||
This study was performed to investigate the effect of methyl jasmonate (MeJA) elicitor on green fluorescent protein (GFP) and Anti vascular endothelial growth factor (Anti-VEGFR2) proteins accumulation. A factorial experiment based on completely randomized design (CRD) was performed primarily to evaluate the effect of MeJA and days after inoculation on GFP expression in Brassica napus and Nicotiana benthamiana. RT-PCR and qRt-PCR assay was performed for GFP gene transcription confirmation at mRNA level. ELISA was done to investigate effect of the elicitor on GFP and Anti-VEGFR2 accumulation. The optimum treatment combination was then used to check Anti-VEGFR2 accumulation. GFP expression was significantly enhanced using M1D10 combination (the best treatment combination) in the two plants. This increase was greater in Brassica napus than in Nicotiana benthamiana. GFP and Anti-VEGFR2 transcript levels showed no significant differences between the optimized and control treatments in the qRT-PCR experiment, but the quantity of Anti-VEGFR2 protein accumulated in optimized treatments was higher than in control. A simple explanation for the improved accumulation of GFP and Anti-VEGFR2 would be a low ‘sink pressure’ on amino acid pools towards RuBisCO biosynthesis in RuBisCO-depleted leaves, and a resulting increased availability of metabolite and cellular resources for the production of less abundant (e.g., recombinant) proteins. This research showed that MeJA elicitor increased the accumulation of both proteins. | ||
کلیدواژهها | ||
Elicitor؛ GFP؛ Molecular farming؛ Recombinant protein؛ Transient expression | ||
عنوان مقاله [English] | ||
تجمع پروتئین نوترکیب Anti-VEGFR2 تحت تاثیر تیمار متیل جاسمونات درگیاهان کلزا و توتون | ||
نویسندگان [English] | ||
مهسا صدری1؛ مختار جلالی جواران1؛ مژگان سلیمانی زاده2 | ||
1گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران. | ||
2گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه هرمزگان، بندرعباس، ایران. | ||
چکیده [English] | ||
این تحقیق بهمنظور بررسی اثر الیسیتور متیل جاسمونات (MeJA) روی تجمع پروتئینهای نوترکیب GFP و Anti-VEGFR2 انجام شد. ابتدا بهمنظور ارزیابی اثر MeJA و روزهای نمونهبرداری پس از مایهکوبی روی بیان GFP در کلزا و توتون آزمایش فاکتوریلی در قالب طرح کاملا تصادفی انجام شد. برای تأیید رونویسی ژن GFP در سطح RNA، RT-PCR و آزمون qRt-PCR انجام شد. آزمون الیزا برای بررسی اثر الیسیتور روی تجمع GFP و Anti-VEGFR2 انجام شد. بهمنظور تأیید بیان ژن GFP در سطح پروتئین و سپس تعیین بهترین ترکیب تیماری، بیان ژن GFP تحت تاثیر تمام ترکیبات با استفاده از الیزا بررسی شد. سپس بهترین ترکیب تیماری برای بررسی تجمع Anti-VEGFR2 استفاده شد. بیان GFP بهطور معنیداری با استفاده از ترکیب M1D10 (بهترین ترکیب تیماری) در هر دو گیاه افزایش یافت. این افزایش در گیاه کلزا بیشتر از توتون بود. بنابراین بهترین ترکیب تیماری برای بیان ژن Anti-VEGFR2 در گیاهان کلزا استفاده شد. در آزمایش qRT-PCR سطوح رونوشت GFP و Anti-VEGFR2 هیچ گونه تفاوت معنیداری بین تیمارهای شاهد و بهینه نشان نداد، اما مقدار پروتئین Anti-VEGFR2 تجمع یافته در تیمارهای بهینه شده بیشتر از کنترل بود. توضیح ساده برای تجمع افزایش یافته نانوبادی Anti-VEGFR2 و GFP کاهش بیان پروتئین RuBisCO در برگها و در نتیجه افزایش دسترسی منابع متابولیکی و سلولی برای تولید پروتئینهای با فراواتی کمتر (از جمله پروتئینهای نوترکیب) میباشد. این تحقیق نشان داد که الیسیتور تجمع هر دو پروتئین نوترکیب GFP و Anti-VEGFR2 را افزایش میدهد. | ||
کلیدواژهها [English] | ||
الیسیتور, بیان موقت, پروتئین نوترکیب, زراعت مولکولی | ||
مراجع | ||
Behdani M., Zeinali S., Khanahmad H., Karimipour M., Asadzadeh N., Azadmanesh K., Khabiri A., Schoonooghe S., Habibi Anbouhi M., Hassanzadeh-Ghassabeh G., and Muyldermans S. (2012). Generation and characterization of a functional nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Molecular Immunology, 50: 35-41. Bilgin D. D., Zavala J. A., Zhu J., Clough S. J., Ort D. R., and DeLucia E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant Cell Environment, 33: 1597-1613. Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., and Jemal A. (2018). Global cancer statistics 2018: GLOBOCAN estimates incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68: 394-424. Buelens K., Hassanzadeh‐Ghassabeh G., Muyldermans S., Gils A., and Declerck P. (2010). Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor. Journal of Thrombosis and Haemostasis, 8: 1302-1312. Cortes J., Perez‐García J. M., Llombart‐Cussac A., Curigliano G., El Saghir N. S., Cardoso F., and Harbeck N. (2020). Enhancing global access to cancer medicines. CA: A Cancer Journal for Clinicians, 2: 105-124. Desai P. N., Shrivastava N., and Padh H. (2010). Production of heterologous proteins in plants: strategies for optimal expression. Biotechnology Advances, 28: 427-435. Duceppe M. O., Cloutier C., and Michaud D. (2012). Wounding, insect chewing, and phloem feeding sap-feeding differentially alter the leaf proteome of potato, Solanum tuberosum L. Proteome Science, 10: 73-75. Folkman J. (2007). Angiogenesis: an organizing principle for drug discovery. Nature Review Drug Discovery, 6: 273-286. Gerasimova S., Smirnova O., Kochetov A., and Shumnyi V. (2016). Production of recombinant proteins in plant cells. Russian Journal of Plant Physiology, 63: 26-37. Guy C., Haskell D., Neven L., Klein P., and Smelser C. (1992). Hydration-state-responsive proteins link cold and drought stress in spinach. Planta, 188: 265-270. Hefferon K. (2017). Plant virus expression vectors: a powerhouse for global health. Biomedicines, 5: 44. Heidari-Japelaghi R., Valizadeh M., Haddad R., Dorani-Uliaie E., and Jalali-Javaran M. (2020). Fusion to elastin-like polypeptide increases production of bioactive human IFN-γ in tobacco. Transgenic Research, 29: 381-394. Izadi S., Jalali Javaran M., Rashidi Monfared S., and Castilho A. (2021). Reteplase Fc-fusions produced in N. benthamiana are able to dissolve blood clots ex vivo. Plos One, 16: e0260796. Javaran V. J., Shafeinia A., Javaran M. J., Gojani E. G., and Mirzaee M. (2017). Transient expression of recombinant tissue plasminogen activator (rt-PA) gene in cucurbit plants using a viral vector. Biotechnology Letters, 39: 607-612. Jovčevska I., and Muyldermans S. (2020). The therapeutic potential of nanobodies. BioDrugs, 34: 11-26. Karami E., Naderi S., Roshan R., Behdani M., and Kazemi-Lomedasht F. (2022). Targeted therapy of angiogenesis using anti-VEGFR2 and anti-NRP-1 nanobodies. Cancer Chemotherapy and Pharmacology, 89(2): 165-172. Karimzadegan V., Javaran V. J., Bakhsh M. S., and Javaran M. J. (2019). The Effect of methyl jasmonate and temperature on the transient expression of recombinant proteins in Cucurbita pepo L. Molecular Biotechnology, 61: 84-92. Kopertekh L., and Schiemann J. (2017). Transient production of recombinant pharmaceutical proteins in plants: evolution and perspectives. Current Medicinal Chemistry, 26: 365-380. Long Y., Wei X., Wu S., Wu N., Li Q. X., Tan B., and Wan X. (2022). Plant molecular farming, a tool for functional food production. Journal of Agricultural and Food Chemistry, 70: 2108-2116. Mahmood M. A., Naqvi R. Z., Rahman S. U., Amin I., and Mansoor S. (2023). Plant virus-derived vectors for plant genome engineering. Viruses, 15(2): 531. Mao J. J., Pillai G. G., Andrade C. J., Ligibel J. A., Basu P., Cohen L., and Dhiman K. S. (2022). Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA: A Cancer Journal for Clinicians, 2: 144-164. Mirzaee M., Jalali-Javaran M., Moieni A., Zeinali S., Behdani M., Shams-Bakhsh M., and Modarresi M. (2018). Anti-VEGFR2 nanobody expression in lettuce using an infectious turnip mosaic virus vector. Journal of Plant Biochemistry and Biotechnology, 27: 167-174. Mirzaee M., Jalali-Javaran M., Moieni A., Zeinali S., and Behdani M. (2018). Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.). Plant Molecular Biology, 97: 103-112. Mirzaee M., Osmani Z., Frébortová J., and Frébort I. (2022). Recent advances in molecular farming using monocot plants. Biotechnology Advances, 58: 107913. Modarresi M., Javaran M. J., Shams-bakhsh M., Zeinali S., Behdani M., and Mirzaee M. (2018). Transient expression of anti-VEFGR2 nanobody in Nicotiana tabacum and N. benthamiana. 3 Biotech, 8: 484. Muyldermans S., Baral T., Retamozzo V. C., De Baetselier P., De Genst E., Kinne J., Leonhardt H., Magez S., Nguyen V., and Revets H. (2009). Camelid immunoglobulins and nanobody technology. Veterinary Immunology and Immunopathology, 128: 178-183. Park K. Y., and Wi S. J. (2016). Potential of plants to produce recombinant protein products. The Journal of Plant Biology, 59: 559-568. Pulumati A., Pulumati A., Dwarakanath B. S., Verma A., and Papineni R. V. (2023). Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Reports, 6(2): e1764. Razmi S., Javaran M. J., Bagheri A., Honari H., and Soleimanizadeh M. (2019). Expression of human interferon-gamma in tobacco chloroplasts. Romanian Biotechnological Letters, 24: 208-215. Robert S., Goulet M. C., D’Aoust M. A., Sainsbury F., and Michaud D. (2015). Leaf proteome rebalancing in Nicotiana benthamiana for upstream enrichment of a transiently expressed recombinant protein. Plant Biotechnology Journal, 13: 1169-1179. Saberianfar R., and Menassa R. (2018). Strategies to increase expression and accumulation of recombinant proteins. In book: Molecular Pharming: Applications, Challenges, and Emerging Areas, 119-135. Schillberg S., and Finnern R. (2021). Plant molecular farming for the production of valuable proteins–critical evaluation of achievements and future challenges. Journal of Plant Physiology, 258: 153359. Soleimanizadeh M., Bagheri A., Jalali Javaran M., Seifi A., Behdani M., and Kazemi-Lomedasht F. (2019). Enhanced expression and purification of anti-VEGF nanobody in cucurbit plants. Journal of Plant Biochemistry and Biotechnology, 28: 263-270. Soleimanizadeh M., Jalali Javaran M., Bagheri A., and Behdani M. (2022). Apoplastic production of recombinant AntiVEGF protein using plant-virus transient expression vector. Molecular Biotechnology, 64: 1013-1021. Wani K. I., and Aftab T. (2022). Plant molecular farming: applications and new directions. Springer Cham, Springer Nature Switzerland, pp. 77. DOI: https://doi.org/10.1007/978-3-031-12794-6. Yarbakht M., Jalali‐Javaran M., Nikkhah M., and Mohebodini M. (2015). Dicistronic expression of human proinsulin–protein A fusion in tobacco chloroplast. Applied Biochemistry and Biotechnology, 62: 55-63. Zubo Y. O., Yamburenko M. V., Kusnetsov V. V., and Börner T. (2011). Methyl jasmonate, gibberellic acid, and auxin affect transcription and transcript accumulation of chloroplast genes in barley. The Journal of Plant Physiology, 168: 1335-1344. | ||
آمار تعداد مشاهده مقاله: 217 تعداد دریافت فایل اصل مقاله: 105 |