تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,143 |
تعداد مشاهده مقاله | 4,279,988 |
تعداد دریافت فایل اصل مقاله | 2,866,886 |
Isolated microspore culture in eggplant and inducing heart-shaped embryos | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 11، شماره 2 - شماره پیاپی 22، دی 2022، صفحه 47-57 اصل مقاله (990.46 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.18878.1345 | ||
نویسندگان | ||
Mozhgan Hashemi1؛ Ahmad Moieni* 1؛ Mohammad Sadegh Sabet1؛ Ali Mokhtassi-Bidgoli2 | ||
1Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. | ||
2Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. | ||
تاریخ دریافت: 14 خرداد 1402، تاریخ بازنگری: 30 مهر 1402، تاریخ پذیرش: 09 آبان 1402 | ||
چکیده | ||
In many crops, androgenesis is one of the most common methods for in vitro haploid induction. The most effective technique in this system is the isolated-microspore culture, in which haploid cells are reprogrammed to follow the sporophytic pathway. But this pathway has been stopped at the globular shape stage of embryogenesis in eggplant, and efforts are still being made to overcome this problem. In this study, the effects of different concentrations of gum arabic, sucrose, and plant growth regulators (6-Benzylaminopurine, BAP, and 1-Naphthaleneacetic acid, NAA) were evaluated on isolated microspore cultures from two cultivars of eggplant. In cultivar Ricarda, the highest number of microspore-derived calli (711.4 per Petri dish) was produced when 2000 mg/l gum arabic, 2% sucrose, 0.5 mg/l BAP, and 0.5 mg/l NAA were used together. By combining 2600 mg/l gum arabic, 2% sucrose, and 0.5 mg/l BAP and NAA, the cultivar Chantale produced the most calli (230.33 per Petri dish; 5.27-fold higher than the control (43.73 per Petri dish). In addition, the results showed that heart-shaped embryos could be produced in eggplant. The culture of microspores of cultivar Ricarda in NLN medium supplemented with 2600 mg/l of gum arabic, 2% sucrose, 0.5 mg/l BAP, and 0.5 mg/l NAA led to the developmental progression of some of the globular structures. In fact, the globular embryos were induced to develop into heart-shaped embryos, which is a promising step forward in the process of eggplant microspore embryogenesis. | ||
کلیدواژهها | ||
BAP؛ Gum arabic؛ Microspore callogenesis؛ Microspore embryogenesis؛ NAA؛ Sucrose | ||
عنوان مقاله [English] | ||
کشت میکروسپور جداشده در بادمجان و القاء جنین های قلبی شکل | ||
نویسندگان [English] | ||
مژگان هاشمی1؛ احمد معینی1؛ محمد صادق ثابت1؛ علی مختصی بیدگلی2 | ||
1گروه ژنتیک و به نژادی گیاهی ، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران. | ||
2گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران. | ||
چکیده [English] | ||
در بسیاری از گیاهان ، آندروژنز یکی از رایج ترین روش های درون شیشه ای برای القای هاپلوئیدی است. کشت میکروسپور مؤثرترین روش آندروژنز است. در کشت میکروسپور بادمجان، پروسه جنین زایی در مرحله جنین کروی شکل متوقف شده است و تلاش ها برای غلبه بر این مشکل ادامه دارد. در این مطالعه، اثرات غلظتهای مختلف صمغ عربی، ساکارز و تنظیمکنندههای رشد گیاهی (6- بنزیل آمینوپورین (BAP) و 1-نفتالن استیک اسید (NAA)) روی کشت میکروسپور دو رقم بادمجان بررسی شدند. در رقم ریکاردا، بیشترین کالوس های مشتق شده از میکروسپور (711/4 کالوس در هر پتری دیش) زمانی تولید شد که 2000 میلی گرم در لیتر صمغ عربی، 2 درصد ساکارز، 0/5 میلی گرم در لیتر BAP و 0/5 میلی گرم در لیتر NAA استفاده شد. رقم شانتال با ترکیبی از 2600 میلی گرم در لیتر صمغ عربی، 2 درصد ساکارز و 0/5 میلی گرم در لیتر از BAP و NAA، بیشترین تعداد کالوس را تولید کرد (230/33 کالوس در هر پتری دیش؛ 5/27 برابر بیشتر از شاهد (43/73). نتایج همچنین نشان داد که جنین های قلبی شکل می توانند در بادمجان تولید شوند. کشت میکروسپور رقم ریکاردا در محیط کشت NLN حاوی 2600 میلیگرم در لیتر صمغ عربی، 2 درصد ساکارز و 0/5 میلیگرم در لیتر BAP و 0/5 میلیگرم در لیتر NAA منجر به پیشرفت روند تکاملی برخی از ساختارهای کروی شکل شد. در واقع، جنینهای کروی به جنینهای قلبی شکل تبدیل شدند که یک گام امیدوارکننده در مسیر جنینزایی میکروسپور بادمجان است. | ||
کلیدواژهها [English] | ||
کالوس زایی میکروسپور, جنین زایی میکروسپور, صمغ عربی, 6- بنزیل آمینوپورین, 1-نفتالن استیک اسید, ساکارز | ||
مراجع | ||
Bal U., Ellialtioglu S., and Abak K. (2009). Induction of symmetrical nucleus division and multi-nucleate structures in microspores of eggplant (Solanum melongena L.) cultured in vitro. Journal of Science Agriculture, 66: 535-539. DOI: https://doi.org/10.1590/S0103-90162009000400016. Borderies G., Béchec M. L., Rossignol M., Lafitte C., Deunff E. L., Beckert M., Dumas C., and Matthys-Rochon E. (2004). Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. European Journal of Cell Biology, 83: 205-212. DOI: https://doi.org/10.1078/0171-9335-00378. Calabuig-Serna A., Camacho-Fernández C., Mir R., Porcel R., Carrera E., Lopez-Diaz I., and Seguí-Simarro J. M. (2021). Quantitative and qualitative study of endogenous and exogenous growth regulators in eggplant (Solanum melongena) microspore cultures. Journal of Plant Growth Regulation, 96: 345-355. Corral-Martínez P., and Seguí-Simarro J. M. (2012). Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica, 187: 47-61. DOI: https://doi.org/10.1007/s10681-012-0715-z. Corral-Martínez P., and Seguí-Simarro J. M. (2014). Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica, 195: 369-382. DOI: https://doi.org/10.1007/s10681-013-1001-4. Cristea T. O., Maria P., Creola B., and Marian B. (2013). Effect of carbohydrate type over the microspore embryogenesis at Brassica oleracea L. Romanian Biotechnological Letters, 18(5): 8677. Custers J. B. M. (2003). Microspore culture in rapeseed (Brassica napus L.). In: Maluszynski M., Kasha K. J., Forster B. P., and Szarejko I. (Eds.), Doubled Haploid Production in Crop Plants: a manual, Springer, Dordrecht, 185-193. DOI: https://doi.org/10.1007/978-94-017-1293-4_29. Dias J. S., and Marto A. (2001). Effect of sucrose concentration on Brassica rapa rapid-cycling microspore culture embryogenesis. In: Biotechnological approaches for utilisation of gametic cells. COST 824: Final Meeting, Bled, Slovenia, 1-5 July 2000, Office for Official Publications of the European Community, 119-124. Dubas E., Benkova E., Waligorski P., Dziurka M., and Zur I. (2012). The involvement of endogenous auxins in androgenesis of Brassica napus. Acta Biologica Cracoviensia. Series Botanica. Supplement, 54(1): 56. Dubas E., Benková E., Janowiak F., Waligorski P., Dziurka M., Krzewska M., and Żur I. (2013). Endogenous auxin and ABA in microspore embryogenesis of oilseed rape (Brassica napus L.). In: European Frontiers of Plant Reproduction Research. Final conference of the COST action FA0903 ‘Harnessing Plant Reproduction for Crop Improvement’, Oslo (Norvay), 2-4. Dubas E., Moravčíková J., Libantová J., Matušíková I., Benková E., Żur I., and Krzewska M. (2014). The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma, 251: 1077-1087. DOI: https://doi.org/10.1007/s00709-014-0616-1. Dunwell J. M., and Thurling N. (1985). Role of sucrose in microspore embryo production in Brassica napus ssp. oleifera. Journal of Experimental Botany, 36(9): 1478-1491. ElAmin E. E., Ballal M. E., and Mahmoud A. E. (2015). Relationship between Metal Ions in Gum Arabic (Acacia senegal) and the Mineral. International Journal of Recent Research in Life Sciences, 2(4): 20-24. El-Tantawy A. A., Solís M. T., Costa M. L. D., Coimbra S., and Risueño M. C. (2013). Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Journal of Plant Reproduction, 26: 231-243. DOI: https://doi.org/10.1007/s00497-013-0217-8. FAOSTAT (2021). https://www.fao.org/faostat/en/#home. Ferrie A. M. R., and Caswell K. L. (2011). Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Journal of Plant Cell Tissue Organ Culture, 104: 301-309. DOI: https://doi.org/10.1007/s11240-010-9800-y. Ferrie A. M. R., Palmer C. E., and Keller W. A. (1995). Haploid embryogenesis. In: Thorpe T. A. (Ed.), In vitro embryogenesis in plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, 309-344. Góralski G., Lafitte C., Bouazza L., Matthys-Rochon E., and Przywara L. (2002). Influence of sugars on isolated microspore development in maize (Zea mays L.). Acta Biologica Cracoviensia. Series Botanica, 44: 203-212. Gu S. R. (1979). Plantlets from isolated pollen cultures of eggplant (Solanum melongena L.). Journal of Integrative Plant Biology, 21: 30-36. Hashemi M., Moieni A., and Sabet M. S. (2023). Improving the isolated microspore culture in eggplant (Solanum melongena L.) with amino acid nutrition. Plos One, 18(6): e0286809. Kim M., Jang I. C., Kim J. A., Park E. J., Yoon M., and Lee Y. (2008). Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Journal of Plant Cell Reports, 27: 425-434. DOI: https://doi.org/ 10.1007/s00299-007-0442-4. Knapp S., Aubriot X., and Prohens J. (2019). Eggplant (Solanum melongena L.): taxonomy and relationships. In: Chapman M. (Ed.), The eggplant genome. compendium of plant genomes, Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-99208-2_2. Kumar A., Sharma V., Jain B. T., and Kaushik P. (2020). Heterosis breeding in eggplant (Solanum melongena L.): gains and provocations. Journal of Plants, 9(3): 403. DOI: https://doi.org/10.3390/plants9030403. Lema-Ruminska J., Goncerzewicz K., and Gabriel M. (2014). Influence of abscisic acid and sucrose on somatic embryogenesis in cactus Copiapoa tenuissima Ritt. forma mostruosa. The Scientific World Journal, 2013: 513985. DOI: https://doi.org/10.1155/2013/513985. Letarte J., Simion E., Miner M., and Kasha K. J. (2006). Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Journal of Plant Cell Reports, 24(12): 691-698. DOI: https://doi.org/10.1007/s00299-005-0013-5/ Lichter R. (1981). Anther culture of Brassica napus in a liquid culture medium. Zeitschrift für Pflanzenphysiologie, 103(3): 229-237. Ma Y., and Johnson K. (2021). Arabinogalactan-proteins. WikiJournal of Science, 4(1): 5. DOI: https://doi.org/10.15347/WJS/2021.002. Makowska K., Kałużniak M., Oleszczuk S., Zimny J., Czaplicki A., and Konieczny R. (2017). Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Journal of Plant Cell Tissue Organ Culture, 131: 247-257. DOI: https://doi.org/10.1007/s11240-017-1280-x. Mishra V. K., and Singh R. M. (2016). Sorbitol and sucrose- induced osmotic stress on growth of wheat callus and plantlet regeneration. Journal of Current Trends in Biotechnology and Pharmacy, 10(1): 5-12. Miyoshi K. (1996). Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.). Journal of Plant Cell Reports, 15: 391-395. DOI: https://doi.org/10.1007/BF00232061. Moubayidin L., Mambro R. D., and Sabatini S. (2009). Cytokinin-auxin crosstalk. Journal of Trends in Plant Science, 14: 557-562. DOI: https://doi.org/10.1016/j.tplants.2009.06.010. Muñoz-Amatriaín M., Svensson J. T., Castillo A. M., Cistué L., Close T. J., and Vallés M. P. (2009). Expression Profiles in Barley Microspore Embryogenesis. In: Touraev A., Forster B. P., Jain S. M. (Eds.), Advances in Haploid Production in Higher Plants. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-8854-4_9. Osman M. E., Williams P. A., Menzies A. R., and Phillips G. O. (1993). Characterization of commercial samples of gum arabic. Journal of Agricultural and Food Chemistry, 41(1): 71-77. Ozdemir Celik B., and Onus A. N. (2018). Effect of genotype on microspore culture of eggplant (Solanum melongena L.). In: XXX International Horticultural Congress IHC2018: II International Symposium on Plant Breeding in Horticulture, Acta Horticulturae, 1282: 377-382. DOI: https://doi.org/10.17660/ActaHortic.2020.1282.56. Pérez-Pérez Y., El-Tantawy A. A., Solís M. T., Risueño M. C., and Testillano, P. S. (2019). Stress-induced microspore embryogenesis requires endogenous auxin synthesis and polar transport in barley. Frontiers in Plant Science, 10: 1200. Pourmohammad A., Moieni A., Dehghani H., and Rashidi Monfared S. (2021). Field-grown donor plants and arabinogalactan proteins improve microspore embryogenesis in sweet pepper (Capsicum annuum L.). Journal of In Vitro Cellular and Developmental Biology – Plant, 57: 510-518. DOI: https://doi.org/10.1007/s11627-020-10152-2. Randall R. C., Phillips G. O., and Williams P. A. (1989) Fractionation and characterization of gum from Acacia senegal. Food Hydrocolloids, 3: 65-75. Rivas-Sendra A., Campos-Vega M., Calabuig-Serna A., and Seguí-Simarro J. M. (2017). Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica, 213: 89. DOI: https://doi.org/10.1007/s10681-017-1879-3. Rivas-Sendra A., Corral-Martínez P., Camacho-Ferna´ndez C., Porcel R., and Seguí-Simarro J. M. (2020). Effects of growth conditions of donor plants and in vitro culture environment in the viability and the embryogenic response of microspores of different eggplant genotypes. Euphytica, 216: 167. DOI: https://doi.org/10.1007/s10681-020-02709-4. Rodríguez-Sanz H., Solís M. T., López M. F., Gómez-Cadenas A., Risueño M. C., and Testillano P. S. (2015). Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant and Cell Physiology, 56(7): 1401-1417. DOI: https://doi.org/10.1093/pcp/pcv058. Seguí‐Simarro J. M., and Nuez F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore‐derived embryogenesis. Physiologia Plantarum, 134(1): 1-12. Serpe M. D., and Nothnagel E. A. (1994). Effects of Yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta, 193: 542-550. Shi X., Dai X., Liu G., and Bao M. (2009). Enhancement of somatic embryogenesis in camphor tree (Cinnamomum camphora L.): osmotic stress and other factors affecting somatic embryo formation on hormone-free medium. Journal of Trees, 23: 1033-1042. DOI: https://doi.org/10.1007/s00468-009-0345-9. Silva J., Ferraz R., Dupree P., Showalter A. M., and Coimbra S. (2020). Three decades of advances in arabinogalactan-protein biosynthesis. Frontiers in Plant Science, 11: 610377. DOI: https://doi.org/10.3389/fpls.2020.610377. Touraev A., Pfosser M., Vicente O., and Heberle-Bors E. (1996). Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Journal of Planta, 200: 144-152. Touraev A., Vicente O., and Heberle-Bors E. (1997). Initiation of microspore embryogenesis by stress. Trends in Plant Science, 2(8): 297-302. Tsuwamoto R., Fukuoka H., and Takahata Y. (2007). Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta, 225: 641-652. DOI: https://doi.org/10.1007/s00425-006-0388-8. Vandevelde M. C., and Fenyo J. C. (1985). Macromolecular distribution of Acacia senegal gum (gum arabic) by size exclusion chromatography. Carbohydr. Polym, 5: 251-273. Vural G. E., and Ari E. (2020). Triple synergistic effect of maltose, silver nitrate and activated charcoal on high embryo yield of eggplant (Solanum melongena L.) anther cultures. Scientia Horticulturae, 272: 109472. DOI: https://doi.org/10.1016/ j.scienta.2020.109472. Yuan S., Su Y., Liu Y., Fang Z., Yang L., Zhuang M., Zhang Y., and Sun P. (2012). Effects of pH, MES, arabinogalactan-proteins on microspore cultures in white cabbage. Journal of Plant Cell Tissue Organ Culture, 110: 69-76. DOI: https://doi.org/10.1007/s11240-012-0131-z. Zielińskia K., Dubasa E., Geršic Z., Krzewskaa M., Janas A., Nowickaa,d A., Matušíkováe I., Żura I., Sakudaf Sh., and Moravčiková J. (2021). β-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). Journal of Plant Science, 302: 110700. DOI: https://doi.org/10.1016/j.plantsci.2020.110700. Zur I., Dubas E., Krzewska M., and Janowiak F. (2015). Current insights into hormonal regulation of microspore embryogenesis. Journal of Frontiers in Plant Science, 6: 424. DOI: https://doi.org/10.3389/fpls.2015.00424. | ||
آمار تعداد مشاهده مقاله: 439 تعداد دریافت فایل اصل مقاله: 233 |