![سامانه مدیریت نشریات علمی دانشگاه بین المللی امام خمینی](./data/logo.png)
تعداد نشریات | 19 |
تعداد شمارهها | 385 |
تعداد مقالات | 3,158 |
تعداد مشاهده مقاله | 4,310,379 |
تعداد دریافت فایل اصل مقاله | 2,906,134 |
Assessment of genetic variation among bread wheat genotypes based on yield-related traits | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 12، شماره 1 - شماره پیاپی 23، تیر 2023، صفحه 37-52 اصل مقاله (937.48 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.19116.1353 | ||
نویسندگان | ||
Monireh Nazari1؛ Khalil Zaynali Nezhad* 1؛ Andreas Börner2؛ Mohammadhadi Pahlevani1 | ||
1Department of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. | ||
2Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany. | ||
تاریخ دریافت: 15 مرداد 1402، تاریخ بازنگری: 15 آذر 1402، تاریخ پذیرش: 19 آذر 1402 | ||
چکیده | ||
Genetic diversity is a base for the survival and improvement of crops. This experiment was conducted to evaluate genetic diversity among 400 bread wheat genotypes based on nine quantitative yield-related traits. The results of descriptive statistics showed that the highest and lowest amount of phenotypic variation belonged to kernel weight per spike (34.61%) and kernel length (7.61%), respectively. Correlation coefficient analysis showed a strong and positive correlation between kernel weight and spike weight (0.97) followed by the number of kernels per spike and number of kernels per spikelet (0.91). Principal component analysis reduced the nine traits into three principal components that explained 85 percent of the total variation. Factor analysis revealed three underlying factors that explained 86 percent of the variation. Cluster analysis based on all the studied traits divided the genotypes into four clusters. The first cluster included 145 genotypes and had the lowest means for most of the traits. The second cluster included 43 genotypes and had the highest mean for kernel length. The third cluster included 77 genotypes that had the highest means for spike weight, kernel weight per spike, kernel width, and thousand-kernel weight. The fourth cluster included 135 genotypes and had the highest means for spike length, number of spikelets, kernels per spikelet, and kernels per spike. The results of this study can contribute to the understanding of genetic diversity among bread wheat genotypes and can be used for bread wheat improvement programs. | ||
کلیدواژهها | ||
Bread wheat؛ Genetic diversity؛ Morphological traits؛ Multivariate analysis | ||
عنوان مقاله [English] | ||
ارزیابی تنوع ژنتیکی بین ژنوتیپهای گندم نان بر اساس صفات مرتبط با عملکرد | ||
نویسندگان [English] | ||
منیره نظری1؛ خلیل زینلی نژاد1؛ آندریاس برنر2؛ محمدهادی پهلوانی1 | ||
1گروه تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2موسسه ژنتیک گیاهی و تحقیقات گیاهان زراعی لایب نیتس (IPK)، گاترسلبن، آلمان. | ||
چکیده [English] | ||
تنوع ژنتیکی اساس بقای گیاهان و بهبود محصولات زراعی است. در این پژوهش 400 ژنوتیپ گندم به منظور بررسی تنوع ژنتیکی بر اساس نه صفت کمی مرتبط با عملکرد، بررسی شدند. نه صفت کمی اندازهگیری شدند. نتایج آمار توصیفی نشان داد که بیشترین و کمترین ضریب تغییرات فنوتیپی به ترتیب مربوط به صفت وزن دانه در سنبله (61/%34) و طول دانه (61/%7) بود. بر اساس نتایج تجزیه همبستگی، بیشترین همبستگی مثبت بین وزن دانه در سنبله با وزن سنبله (97/0) و تعداد دانه در سنبلچه با تعداد دانه در سنبله (91/0) مشاهد شد. تجزیه به مولفههای اصلی، نه صفت کمی را به سه مولفه کاهش داد که در مجموع 85 درصد از واریانس کل را توجیه نمودند. در تجزیه به عاملها تنها سه عامل حدود 86 درصد از واریانس کل را توجیه نموند. تجزیه کلاستر ژنوتیپها را به چهار گروه طبقهبندی نمود. گروه اول شامل 145 ژنوتیپ بود که کمترین میانگین را برای اکثر صفات مورد بررسی داشتند. گروه دوم شامل 43 ژنوتیپ با بودند که بیشترین میانگین صفت طول دانه را داشتند. گروه سوم شامل 77 ژنوتیپ بود که بیشترین میانگین وزن سنبله، وزن دانه در سنبله، عرض دانه و وزن هزار دانه را داشتند. گروه چهارم شامل 135 ژنوتیپ بود که ژنوتیپهای این گروه بطور میانگین طول سنبله، تعداد سنبلچه، تعداد دانه در سنبلچه، و تعداد دانه در سنبله بیشتری داشتند. نتایج این مطالعه به درک تنوع ژنتیکی در بین ژنوتیپهای گندم نان کمک میکند و بینشهای ارزشمندی را برای برنامههای بهبود محصولات زراعی ارائه میکند. | ||
کلیدواژهها [English] | ||
تنوع ژنتیکی, تجزیه و تحلیل چندمتغیره, صفات موفولوژیک, گندم نان | ||
مراجع | ||
Abdelghany M., Saad KH. I., Zayed E. M., Yossry El sayed S., and Amer KH. E. (2023). Genetic variability, principle components and cluster analysis of twenty-eight Egyptian wheat genotypes. Scientific Journal of Agricultural Sciences, 5(1): 107-118. Adilova S. S., Qulmamatova D. E., Baboev S. K., Bozorov T. A., and Morgunov A. I. (2020). Multivariate cluster and principle component analyses of selected yield traits in Uzbek bread wheat cultivars. American Journal of Plant Science, 11(6): 903-912. Aharizad S., Sabzi M., Mohammadi S. A., and Khodadadi E. (2012). Multivariate analysis of genetic diversity in wheat (Triticum aestivum L.) recombinant inbred lines using agronomic traits. Annals of Biological Research, 3: 2118-2126. Ali Y., Atta B. M., Akhtar J., Monneveux P., and Lateef Z. (2008). Genetic variability, association and diversity studies in wheat (Triticum aestivum L.) germplasm. Pakistan Journal of Botany, 40: 2087-2097. Antim, Singh V., Poonia M. S., Verma A., Ashish, and Tyagi B. S. (2022). Multivariate Biplot Analysis for the Diversity in Bread Wheat Genotypes (Triticum aestivum L.). International Journal of Bio-resource and Stress Management, 13(3): 219-225. Azizi F., Rezaie A. M., Mir A. M., and Meibodi M. (2001). Evaluation genetic and phenotypic variation and factor analysis on morphological traits in bean genotypes. Journal of Science and Technology of Agriculture and Natural Resource, 5: 127-140. Babaie Zarch M. J., Fotokian M. H., and Mahmoodi S. (2013). Evaluation of genetic diversity of wheat (Triticum aestivum L.) genotypes for morphological traits using multivariate analysis methods. Iranian Journal of Crop Breeding, 5(12): 85-98. Bhandari H. R., Nishant Bhanu A., Srivastava K., Singh M., Shreya N., and Hemantaranjan A. (2017). Assessment of genetic diversity in crop plants- an overview. Advance Plants Agriculture Research, 7(3): 279-286. Chauhan S., Tyagi S. D., Gupta A., and Khanda A. (2023). Genetic divergence analysis in Bread Wheat (Triticum aestivum L.) for yield and its component characters. Scientist, 2(1): 645-649. Chaudhary H., Jaiswal J. P., Kumar A., and Joshi S. (2022). Determination of genetic variability and diversity in bread wheat for yield and yield contributing traits. International Journal of Plant & Soil Science, 16-23: 202-218. Cornich R. (2007). Statistics: cluster analysis. Mathematics Learning Sport Center, 3: 1-5. Fahim M. G. (2014). Grouping of promising agronomic traits of genotypes and lines of bread wheat using cluster analysis and detection function. Indian Journal of Fundamental and Applied Life Sciences, 4: 182-185. FAOSTAT. http://Faostat.fao.org/site/339/default.aspx. Fouad H. (2020). Principal component and cluster analyses to estimate genetic diversity in bread wheat (Triticum aestivum L.) genotypes. Journal of Plant Production, 11(4): 325-331. Franco J., Crossa J., Ribaut J. M., Betran J., Warburton M. L., and Khairallah M. (2001). A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theoretical and Applied Genetics, 103: 944-952. Hassani İ., Nimbal S., Noori A., and Singh V. (2022). Genetic variability analysis and correlation studies of bread wheat (Triticum aestivum L.) genotypes. Journal of Crop Breeding and Genetics, 8(2): 139-145. Iqbal M. A., Rahim J., Naeem W., Hassan S., Khattab Y., and Sabagh A. (2021). Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresenius Environment Bulletin, 30(4): 3115-3121. Janmohammadi M., Movahedi Z., and Sabaghnia N. (2014). Multivariate statistical analysis of some traits of bread wheat for breeding under rain-fed conditions. Journal of Agriculture Science of Belgrade, 59(1): 1-14. Khodadadi M., Fotokian M. H., and Miransari M. (2011). Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Australian Journal of Crop Science, 5(1): 17-24. Kumar P., Singh G., Kumar S., Kumar A., and Ojha A. (2016a). Genetic analysis of grain yield and its contributing traits for their implications in improvement of bread wheat cultivars. Journal of Applied and Natural Science, 8: 350 -357. Lawati A. H. A., Nadaf S. K., Saady N. A. A., Hinai S. A. A., Almamari A., and Maawali A. A. (2021). Multivariate analyses of indigenous bread wheat (Triticum aestivum L.) landraces of Oman. Emirates Journal of Food and Agriculture, 33(6): 483-500. Liu G., Jia L., and Lu L. (2014). Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theoretical and Applied Genetics, 127: 2415-2432. Maqbool R., Sajjad M., Khaliq I., Rehman A., Khan S. A., and Khan H. S. (2010): Morphological diversity and trait association in bread wheat (Triticum aestivum L.). American-Eurasian Journal of Agriculture and Environment Sciences, 8(2): 216-224. Majid S., and Dar Z. A. (2020). Genetic diversity analysis for various morphological and quality traits in bread wheat (Triticum aestivum L.). Plant Archives, 20(1): 2816-2819. Mangroliya U. C., and Sapovadiya M. H. (2020). Estimation of genetic variability and diversity in bread wheat (Triticum aestivum L.) for yield and yield contributing traits. Journal of Pharmacognosy and Phytochemistry, 9(5): 784-789 Maragheh F. P. (2013). Assess the genetic diversity in some wheat genotypes through agronomic traits. European Journal of Zoological Research, 2: 71-75. Mecha B., Alamerew S., Assefa A., Assefa E., and Dutamo D. (2017). Genetic diversity based on multivariate analysis for yield and it’s contributing characters in bread wheat (Triticum aestivum L.) genotypes. Agriculture Research and Technology, 8(5): 1-10. Mohammadi S. A., and Prasanna B. M. (2003). Analysis of genetic diversity in crop plants–salient statistical tools and considerations. Crop Science, 43(4): 1235-1248. Moetamadipoor S. A., Mohammadi M., Bakhshi Khaniki Gh. R., and Karimizadeh R. A. (2015). Relationships between traits of wheat using multivariate analysis. Biological Forum, 7(1): 994-997. Mujaju C., and Chakauya E. (2008). Morphological variation of sorghum landraces from semi-arid areas of Zimbabwe. International Journal of Botany, 4(4): 376-382. Naheed H., Mohammad F., Sohail Q., Abid S., and Khan N. (2016). Genetic diversity of bread wheat lines based on agro-morphological traits. International Journal of Agriculture and Biology, 18: 1049-1055. Poudel A., Bahadur Th. D., and Sapkota M. (2017). Assessment of genetic diversity of bread wheat (Triticum aestivum L.) genotypes through cluster and principal component analysis. International Journal of Experimental Research and Review, 11: 1-9 Qaseem M. F., Qureshi R., Illyas N., and Jalal-Ud-Din S. G. (2017). Multivariate statistical analysis for yield and yield components in bread wheat planted under rainfed conditions. Pakistan Journal of Botany, 49(6): 2445-2450. Sabaghnia N., Mohammadi M. J., Bashiri A., and Shirghan R. A. (2014). Genetic variation of several bread wheats (Triticum aestivum L.) genotypes based on some morphological traits. Agro Science, 1: 44-54. Saleem U., Khaliq I., Tariq M., and Rafique M. (2006). Phenotypic and genotypic correlation coefficients between yield and yield components in wheat. Journal of Agriculture Research, 44: 1-8. Shahid M., Mohammad F., and Tahir M. (2002). Path coefficient analysis in wheat. Sarhad Journal of Agriculture, 18(4): 383-388. Shashikala S. K. (2006). Analysis of genetic diversity in wheat. M.Sc. (Agri.) Thesis, University of Agricultural Sciences, Dharwad, India. Sharma S., Singh V., Singh M. V., Punia R., Hemender Ch., Yashveer Sh., Khan M., and Sangwan S. (2021). Genetic variability and diversity analysis in wheat (Triticum spp.) genotypes using multivariate techniques. Indian Journal of Agricultural Sciences, 91(11): 1684-1689. Siahbidi M. M. P., Aboughadareh A. P., Tahmasebi G. R., Teymoori M., and Jasemi M. (2013). Evaluation of genetic diversity and interrelationships of agro-morphological characters in durum wheat (Triticum durum Desf.) lines using multivariate analysis. International Journal of Agriculture Research Reviews, 3: 184-194. Singh M. K, Sharma P. K, Tyagi B. S., and Singh G. (2013). Genetic analysis for morphological traits and protein content in bread wheat (Triticum aestivum L.) under normal and heat stress environments. Indian Journal of Genetic and Plant Breeding, 73: 320-324. Singh T. (2014). Genetic diversity analysis of durum wheat (Triticum durum Desf.). Indian Journal of Agriculture Research, 49(1): 65-70. Singh G., and Kumar R. (2017). Genetic diversity for yield and yield traits in wheat. Journal of Pharmacognosy and Phytochemistry, 6(5): 2062-2066. Singh G., Kumar P., Kumar R., and Gangwar L. K. (2018). Genetic diversity analysis for various morphological and quality traits in bread wheat (Triticum aestivum L.). Journal of Applied and Natural Science, 10(1): 24-29. Tanveer H., Singh R. K., Singh S., Singh H., and Pal D. (2021). Genetic diversity analysis in bread wheat (Triticum aestivum Linn. Emend Thell.) for yield and its contributing characters. SKUAST Journal of Research, 23(2): 145-149. Tewari R., Jaiswal J. P., Gangwar R. P., and Singh P. K. (2015). Genetic diversity analysis in Exotic germplasm accessions of Wheat (Triticum aestivum L.) by cluster analysis. Electronic Journal of Plant Breeding, 6: 1111-1117. Tiwari S., Tomar R. S., Cand S., Tripathi M. K., Singh A. K., and Tomar S. M. S. (2017). Molecular breeding approaches for improving rust resistance in wheat: (Triticum aestivum L.): marker assisted gene pyramiding. Indian Research Journal of Genetic and Biotechnology, 9(3): 382-396. Tuhina-Khatun M., Hanafi M. M., Yusop M. R., Wong M. Y., Salleh F. M., and Ferdous J. (2015). Genetic variation, heritability and diversity analysis of upland rice (Oryza sativa L.) genotypes based on quantitative traits. BioMed Research International, 2015: 1-8. Tsonev S., Nikolai K. C., Gallina M., Anna D., Elena G. T. (2021). Genetic diversity and population structure of bread wheat varieties grown in Bulgaria based on microsatellite and phenotypic analyses. Biotechnology & Biotechnological Equipment, 35(1): 1520-1533. Vandenberg A., and Stoddard F. L. )2019(. Genetic analysis of photosynthesis-related traits in faba bean (Vicia faba) for crop improvement. Plant Breeding, 00: 1-9. Verma P. N., Singh B. N., Singh G., Singh M. K., and Setter T. L. (2014). Genetic diversity analysis for yield and other agronomic traits in bread wheat under water logged sodic soil condition. Journal of Wheat Research, 6: 51-58. Vora Z. N., Patel J. B., Pansuriya A. G., and Yusufzai S. A. (2017). Genetic divergence analysis in bread wheat (Triticum aestivum L.). Research in Environment and Life Sciences, 10: 291-294. Xhulaj B. D., and Koto R. (2022). Estimation of genetic variability of autochthonous wheat (Triticum aestivum L.) genotypes using multivariate analysis. Agriculture and Forestry, 68(1): 131-143. Yadav P. K., Tiwari S., Kushwah A., Tripathi M. K., Gupta N., Tomar R. S., and Kandalkar V. S. (2021). Morpho-physiological characterization of bread wheat genotypes and their molecular validation for rust resistance genes Sr2, Sr31 and Lr24. Proceeding of the Indian National Science Academy, 87: 534-545. Yadav P. K., Sikarwar R. S., Verma B., Tiwari S., and Shrivastava D. K. (2023). Genetic divergence for grain yield and its components in bread wheat (Triticum aestivum L.): experimental investigation. International Journal of Environment and Climate Change,13(5): 340-348. | ||
آمار تعداد مشاهده مقاله: 661 تعداد دریافت فایل اصل مقاله: 399 |