تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,901 |
تعداد دریافت فایل اصل مقاله | 2,845,009 |
Effects of explant type and Agrobacterium rhizogenes strains on hairy root induction and alizarin production in madder (Rubia tinctorum Ardakan) | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 12، شماره 2 - شماره پیاپی 24، دی 2023، صفحه 1-9 اصل مقاله (845.68 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2023.19535.1361 | ||
نویسندگان | ||
Ebrahim Dorani* ؛ Ommolbanin Honarmand؛ Mostafa Valizadeh | ||
Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. | ||
تاریخ دریافت: 15 آبان 1402، تاریخ بازنگری: 28 آذر 1402، تاریخ پذیرش: 29 آذر 1402 | ||
چکیده | ||
Hairy root culture of plants is a considerable way for the in vitro production of valuable metabolites because of genetic stability, rapid growth rate, biochemical stability, and high capacity in the synthesis of secondary metabolites. Alizarin is an anthraquinone derived from the roots of madder (Rubia tinctorum) and has been used since ancient times as a natural red dye and exhibits various pharmacological and biological activities including anticancer, antioxidant, and anti-microbial activity. The influence of two factors including explant (leaf, internode, cotyledon) and strains of A. rhizogenes (15834, 2656, MSU, R1000) was tested on hairy root production of madder. All explants produced hairy roots with acceptable frequencies but leaf explants produced the highest number of roots per explant followed by cotyledons. The highest root induction rate (100%) and the highest number of hairy roots per explant were obtained from leaf explants inoculated with 15834 and R 1000. Analysis of the PCR products showed the presence of a 403 bp amplicon related to the specific reproduction of rolA gene in transgenic roots. Anthraquinone production was documented in transgenic roots but there was a significant difference between roots from different bacterial strains. As a brief result, the use of suitable bacterial strains and explants were effective factors for hairy root induction in madder. | ||
کلیدواژهها | ||
Alizarin؛ Anthraquinone؛ Madder؛ Secondary metabolite | ||
عنوان مقاله [English] | ||
اثر نوع ریزنمونه و سویه آگروباکتریوم در القای ریشه مویین و محتوی آلیزارین روناس (Rubia tinctorum Ardakan) | ||
نویسندگان [English] | ||
ابراهیم دورانی؛ ام البنین هنرمند؛ مصطفی ولی زاده | ||
گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران. | ||
چکیده [English] | ||
کشت ریشههای مویین گیاهان، بهخاطر پایداری ژنتیکی و سرعت رشد بالا و توانایی تولید متابولیتها در مقیاس قابل توجه، در حال تبدیل شدن به یک روش درونشیشهای ارزشمندی برای تولید متابولیتهای دارویی میباشد. آلیزارین، یک آنتراکینون حاصل از ریشه روناس است که از زمانهای قدیم بهعنوان رنگ گیاهی استفاده میشود و فعالیتهای دارویی مختلفی را از قبیل؛ ضد سرطانی و ضد اکسیدکنندگی نشان میدهد. اثر دو عامل ریزنمونه (برگ، میانگره و کوتیلدون) و سویه باکتری (15834, 2656،MSU و R1000) در القای ریشه مویین روناس مورد مطالعه قرارگرفت. از بین ریزنمونههای مختلف، همة ریزنمونهها با درصد قابل قبولی، ریشة مویین تولید کردند؛ ولی از لحاظ تعداد ریشة تولید شده، برگ و کوتیلدون به ترتیب بهتر بودند. بیشترین درصد ریشهزایی (%100) و تعداد ریشه تولید شده، به ازای ریزنمونه را سویههای R1000 و 15834 داشتند. تجزیه دادههای PCR حضور یک قطعه 403 نوکلوتیدی حاصل از تکثیر اختصاصی ژن rol A را از نمونه DNA ریشههای تراریخته را در ژل آگارز نشان داد. تولید آنتراکینون، در ریشههای تراریخته به اثبات رسید؛ ولی میزان تولید آن، بسته به سویه متفاوت بود. بهطور خلاصه، نتایج این آزمایش نشان داد؛ بهکارگیری سویه باکتری و ریزنمونة مناسب برای تولید ریشه مویین، عوامل مؤثری میباشند. | ||
کلیدواژهها [English] | ||
آلیزارین, آنتراکینون, روناس, متابولیت ثانویه | ||
مراجع | ||
Abadi M., Ganjeali A., Lahouti M., and Moshtaghi N. (2020). Influence of different Agrobacterium rhizogenes strains on hairy roots induction and secondary metabolites production in Ocimum basilicum L. Journal of Horticultural Science, 34: 273-284. Banerjee, S., Singh, S., and Rahman, L. U. (2012). Biotransformation studies using hairy root cultures: A review. Biotechnology Advance, 30: 461-468. Cai D., Kleine M., Kifle S., Horloff H. J., Sandal N. N., Marcker K. A., Lankhorst R. M. K., Salentijn E. M. J., Lange W., Stiekema W., Wyss V., Grundler F. M. W, and Jung C. (1997). Positional cloning of a gene for nematode resistance in sugar beet. Science, 275: 832-834. Eltamany E. E., Nafie M. S., Khodeer D. M., El-Tanahy A. H. H., Abdel-Kader M. S., Badr J. M., and Abdelhameed, R. F. A. (2020). Rubia tinctorum root extracts: chemical profile and management of type II diabetes mellitus. The Royal Society of Chemistry, 10: 24159-24168. Gulhan E. A., and Taskin K. M. (1999). Agrobacterium rhizogenes mediated hairy root formation in some Rubia tinctorum L. American Journal of Botany, 23: 373-377. Gutierrez-Valdes N., Häkkinen S. T., Lemasson C., Guillet M., Oksman-Caldentey K. M., Ritala A., and Cardon F. (2020). Hairy root cultures-a versatile tool with multiple applications. Front in Plant Science, 11: 33-39. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, World Health Organization, Vol. 82, pp. 590. Ionkova I., Kartnig T., and Alfermann W. (1997). Cycloartane saponin production in hairy root cultures of Astragalus mongholicus. Phytochemistry, 45: 1597-1600. Kaliyan B. K., and Agastian P. (2015). In vitro regeneration of a rare antidiabetic plant Epaltes divaricata L. South Indian Journal of Biological Sciences, 1: 52-59. Karuppusamy S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plants Research, 3(13): 1222-1239. Lee S. Y., Kim S. G., Son W. S., Kim Y. K., Park N. I., and Park S. U. (2010). Influence of different strains of Agrobacterium rhizogenes on hairy root induction and production of alizarin and purpurin in Rubiaakane nakai. Romanian Biotechnological Letters, 15: 5405-5409. Li C., and Wang M. (2021). Application of hairy root culture for bioactive compounds production in medicinal plants. Current Pharmaceutial Biotechnolgy, 22(5): 592-608. Mateus L., Ceerkaoui S. Christen P., and Oksmam K. M. (2000). Simultaneous determination of scopolamine, hyoscyamine and littorine in plants and different hairy root clones of Hyoscyamus muticus by micellar electrokinetic chromatography. Phytochemistry, 54: 517-523. Miao Y., Hu Y., Yi S., Zhang X., and Tan N. (2021). Establishment of hairy root culture of Rubia yunnanensis Diels: Production of Rubiaceae-type cyclopeptides and quinones. Journal of Biotechnology, 341: 21-29. Murashige T., and Skoog A. (1962). Revised medium for rapid growth and Bio Assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. Murthy H. N., Joseph K. S., Paek K. Y., and Park S. Y. (2022). Anthraquinone production from cell and organ cultures of Rubia species: An overview. Metabolites, 13: 39-47. Naderian P., Moshtaghi N., Bagheri A., and Malekzadeh-Shafaroudi S. (2022). Influence of different Agrobacterium rhizogenes strains on hairy roots induction and secondary metabolites production in Datura innoxia Mill. Journal of Medicinal Plants, 21: 50-64. Palazon J., Pinol M. T., Cusido R. M., Morales C., and Bonfill M. (1997). Application of transformed root technology to the production of bioactive metabolites. Recent development in Plant Physiology, 1: 125-143. Perassolo M., Cardilllo A. B., Busto V. D., Rivie S., Cerezo J., and Talou J. R. (2020). Elicitation as an essential strategy for enhancing anthraquinone accumulation in hairy root cultures of Rubia tinctorum. In book: Hairy Root Cultures Based Applications, 133-152. Pirian K., Piri K. H., and Ghiyasvand T. (2012). Hairy roots induction from Portulaca oleracea using Agrobacterium rhizogenes to Noradrenaline,s production. International Research Journal of Applied and Basic Sciences, 3(3): 642-649. Rao R. S., and Ravishankar G. A. (2002). Plant tissue cultures; chemical factories of secondary metabolites. Biotechnology Advances, 20: 101-153. Sathasivam R., Choi M., Radhakrishnan R., Kwon H., Yoon J., Yang S. H., Kim J. K., Chung Y. S., and Park S. U. (2022). Effects of various agrobacterium rhizogenes strains on hairy root induction and analyses of primary and secondary metabolites in Ocimum basilicum. Frontiers in Plant Science, 13: 983776. Tariverdizadeh N., Mohebodini1 M., Chamani1 E., and Ebadi A. (2018). Effects of explant age and strain of Agrobacterium rhizogenes on hairy root induction in Fenugreek (Trigonella foenum– graecum L.). Iranian Journal of Genetics and Plant Breeding, 7(1): 50-58. Tariverdizadeh N., Mohebodini M., Chamani E., and Ebadi A. (2018). Influence of grobacterium rhizogenes strains on hairy roots induction in Trigonella foenum-graecum L. and secondary metabolites production. Journal of Plant Molecular Breeding, 6: 53-60. Thwe A., Valan Arasu M., Li X., Park C. H., Kim S. J., Al-Dhabi N. A., et al. (2016). Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in tartary buckwheat (Fagopyrum tataricum gaertn). Frontiers in Microbiology, 7: 1-10 Tiwari R. K., Trivedi M., Guang Z. C. Guo G. Q., and Zheng G. C. (2007). Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Reports, 26: 199-210. Zheleznichenko T., Voronkova M., Asbaganov S., Kukushkina T., Filippova E., Protsenko M., Mazurkova N., and Novikova T. (2023). Impact of different Agrobacterium rhizogenes strains on secondary metabolites accumulation in Nitraria schoberi L. hairy roots and antiviral activity of their extracts against influenza virus of subtypes A (H5N1) and A (H3N2). In Vitro Cellular and Developmental Biology, 59: 378-392. | ||
آمار تعداد مشاهده مقاله: 770 تعداد دریافت فایل اصل مقاله: 220 |