تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,143 |
تعداد مشاهده مقاله | 4,279,946 |
تعداد دریافت فایل اصل مقاله | 2,866,839 |
Antibacterial and antifungal activity of green synthesized silver nanoparticles using aqueous extracts of Silybum marianum L. and Portulaca oleracea L. | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 12، شماره 2 - شماره پیاپی 24، دی 2023، صفحه 21-36 اصل مقاله (1.34 M) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2024.19374.1358 | ||
نویسندگان | ||
Saeid Nasirvand1؛ Rasool Asghari Zakaria* 1؛ Hossein Ali Ebrahimi2 | ||
1Department of Crop Production and Genetics, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran. | ||
2Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran, | ||
تاریخ دریافت: 09 آبان 1402، تاریخ بازنگری: 09 بهمن 1402، تاریخ پذیرش: 09 بهمن 1402 | ||
چکیده | ||
The use of plant extracts to produce metal particles at the nanoscale has attracted intensive research interest due to their cost-effectiveness and eco-friendliness. This study aimed to investigate the synthesis of silver nanoparticles (AgNPs( using aqueous extracts of Silybum marianum L. and Portulaca oleracea L. and to assess their effectiveness as antibacterial and antifungal agents using the agar-well diffusion method. The production of AgNPs was confirmed through spectrophotometry, and their size and shape were measured using Transmission Electron Microscopy (TEM). The role of organic compounds in nanoparticle synthesis was also explored through Fourier Transform Infrared Spectroscopy (FTIR). The FTIR analysis identified the functional groups of organic compounds in S. marianum and P. oleracea extracts that were responsible for reducing Ag ions and capping the resulting AgNPs. The nanoparticles demonstrated potent antimicrobial properties against Escherichia coli, Staphylococcus aureus, Fusarium graminearum, and Alternaria alternata. It was concluded that, in addition to their unique medicinal properties, S. marianum and P. oleracea can be utilized in the production of AgNP for medical and pharmaceutical purposes against Gram-positive and Gram-negative bacteria, as well as fungal infections. In summary, the seed extracts of S. marianum and P. oleracea, which are among the available plant sources, can be used for the highly stable production of AgNPs as a reducing and capping agent. | ||
کلیدواژهها | ||
Antibacterial activity؛ Green synthesis؛ Portulaca oleracea؛ Silver nanoparticles؛ Silybum marianum | ||
عنوان مقاله [English] | ||
فعالیت ضدباکتریایی و ضد قارچی نانوذرات نقره سنتز شده با استفاده از عصاره آبی ماریتیغال (Silybum marianum L.) و خرفه (Portulaca oleracea L.) | ||
نویسندگان [English] | ||
سعید نصیروند1؛ رسول اصغری زکریا1؛ حسین علی ابراهیمی2 | ||
1گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، ایران. | ||
2گروه فارماسیوتیکس، دانشکده داروسازی، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران. | ||
چکیده [English] | ||
روشهای متعددی برای ایجاد ذرات فلزی در مقیاس نانو وجود دارند، با این حال استفاده از عصارههای گیاهی به دلیل مقرون به صرفه بودن و سازگاری با محیطزیست مورد توجه قرار گرفته است. این تحقیق با هدف بررسی تولید نانوذرات نقره (AgNPs) از طریق عصارههای آبی ماریتیغال (.Silybum marianum L) و خرفه (.Portulaca oleracea L) و ارزیابی اثربخشی آنها به عنوان عوامل ضدباکتریایی و ضد قارچی با استفاده از روش انتشار چاهک آگار انجام شد. تولید نانوذرات نقره از طریق اسپکتروفتومتری تأیید و اندازه و شکل آنها با میکروسکوپ الکترونی عبوری (TEM) اندازهگیری شد. دخالت ترکیبات آلی در سنتز نانوذرات نیز از طریق طیفسنجی فروسرخ تبدیل فوریه (FTIR) مورد بررسی قرار گرفت. تجزیه و تحلیل FTIR، گروههای عاملی از ترکیبات آلی موجود در عصارههای ماریتیغال و خرفه را شناسایی کرد که مسئول احیای یونهای Ag و پوشش AgNPهای حاصل بودند. نانوذرات حاصل ویژگیهای ضد میکروبی مؤثری را علیه Escherichia coli، Staphylococcus aureus، Fusarium graminearum و Alternaria alternata نشان دادند. میتوان نتیجه گرفت که عصارههای بذری ماریتیغال و خرفه علاوه بر خواص دارویی منحصر به فرد خود میتوانند برای ایجاد نانوذرات نقره برای اهداف پزشکی و دارویی در برابر باکتریهای گرم مثبت و گرم منفی و همچنین آلودگیهای قارچی استفاده شوند. در کل، عصاره آبی این گیاهان به عنوان یک منبع گیاهی در دسترس، میتوانند به طور مؤثر به عنوان یک عامل احیاکننده و پوششدهنده برای تولید بسیار پایدار نانوذرات نقره مورد استفاده قرار گیرند. | ||
کلیدواژهها [English] | ||
خرفه, سنتز سبز, فعالیت ضد باکتریایی, ماریتیغال, نانوذرات نقره | ||
مراجع | ||
Abdel-Aziz M. S., Shaheen M. S., El-Nekeety A. A., and Abdel-Wahhab M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18(4): 356-363. Afify T., Saleh H., and Ali Z. (2017). Structural and morphological study of gamma‐irradiation synthesized silver nanoparticles. Polymer Composites, 38: 2687-2694. Ahmad N., Sharma S., Alam M. K., Singh V., Shamsi S., Mehta B., and Fatma A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81: 81-86. Ahmed M., Fatima H., Qasim M., and Gul B. (2017). Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. BMC Complementary and Alternative Medicine, 17: 1-16. Ajitha B., Reddy Y. A. K., and Reddy P. S. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials Science and Engineering, 49: 373-381. Allafchian A. R., Jalali S. A. H., Aghaei F., and Farhang H. R. (2018). Green synthesis of silver nanoparticles using Glaucium corniculatum (L.) curtis extract and evaluation of its antibacterial activity. IET Nanobiotechnology, 12: 574-578. Al-Enazi N. M., Alsamhary K., Ameen F., and Kha M. (2023). Plant extract-mediated synthesis cobalt doping in zinc oxide nanoparticles and their in vitro cytotoxicity and antibacterial performance. Heliyon, 9(9): e19659. Asghari G., Varshosaz J., and Shahbazi N. (2014). Synthesis of silver nanoparticle using Portulaca oleracea L. extracts. Nanomedicine Journal, 1: 94-99. Barkai-Golan R., and Paster N. (2008). Mouldy fruits and vegetables as a source of mycotoxins: part 1. World Mycotoxin Journal, 1: 147-159. Basavaraja S., Balaji S. D., Lagashetty A., Rajasab A. H., and Venkataraman A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43: 1164-1170. Behravan M., Panahi A. H., Naghizadeh A., Ziaee M., Mahdavi R., and Mirzapour A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124: 148-154. Bhuyar P., Rahim M. H. A., Sundararaju S., Ramaraj R., Maniam G. P., and Govindan N. (2020). Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences, 9: 1-15. Brown N. A., Urban M., Van de Meene A. M., and Hammond-Kosack K. E. (2010). The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology, 114: 555-571. Chandran S. P., Chaudhary M., Pasricha R., Ahmad A., and Sastry M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology Progress, 22: 577-583. Chen S., Webster S., Czerw R., Xu J., and Carroll D. L. (2004). Morphology effects on the optical properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 4: 254-259. Chen S., Wu G., and Zeng H. (2005). Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydrate Polymers, 60: 33-38. Cullity B. D. (1956). Elements of X-ray Diffraction. Addison-Wesley Publishing. Devanesan S., and AlSalhi M. S. (2021). Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. International Journal of Nanomedicine, 16: 3343-3356. Dorman H. D., and Deans S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88: 308-316. Dousti B., Nabipour F., and Hajiamraei A. (2019a). Green synthesis of silver nanoparticle by using the aqueous extract of Fumaria Parviflora and investigation of their antibacterial and antioxidant activities. Razi Journal of Medical Sciences, 26: 105-117. Dousti B., Nabipour F., and Hajiamraei A. (2019b). Green synthesis of silver nanoparticle using aqueous extract of Fumaria Parviflora and study of its antibacterial and antioxidant properties. Razi Journal of Medical Sciences, 26: 105-117. Duan S., Guan X., Lin R., Liu X., Yan Y., et al. (2015). Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: A dual-target drug for the treatment of Alzheimer’s disease. Neurobiology of Aging, 36: 1792-1807. Durgawale T. P., Khanwelkar C. C., and Durgawale P. P. (2019). Biosynthesis of silver nanoparticles using extracts of two species of Portulaca and their antibacterial activity. International Journal of Pharmaceutical Sciences and Research, 10: 2250-2256. Elemike E. E., Onwudiwe D. C., Ekennia A. C., and Jordaan A. (2018). Synthesis and characterisation of silver nanoparticles using leaf extract of Artemisia afra and their in vitro antimicrobial and antioxidant activities. IET Nanobiotechnology, 12: 722-726. Fahes A., Naciri A. E., Shoker M. B., and Akil S. (2023). Self-assembly-based integration of Ag-Au oligomers and core/shell nanoparticles on polymer chips for efficient sensing devices. Soft Matter, 19(2): 321-330. Farshbaf M., Valizadeh H., Panahi Y., Fatahi Y., Chen M., Zarebkohan A., and Gao H. (2022). The impact of protein corona on the biological behavior of targeting nanomedicines. International Journal of Pharmaceutics, 614: 121458. Fatima H., Khan K., Zia M., Ur-Rehman T., Mirza B., and Haq I.-u. (2015). Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC Complementary and Alternative Medicine, 15: 1-18. Firdhouse M. J., and Lalitha P. (2012). Green synthesis of silver nanoparticles using the aqueous extract of Portulaca oleracea (L.). Asian Journal of Pharmaceutical and Clinical Research, 6: 92-94. Flieger J., Franus W., Panek R., Szymańska-Chargot M., Flieger W., Flieger M., and Kołodziej P. (2021). Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules, 26(16): 4986. Fouda A., Abdel-Nasser M., Eid A. M., Hassan S. E. D., et al. (2023). An Eco-friendly approach utilizing green synthesized titanium dioxide nanoparticles for leather conservation against a fungal strain, Penicillium expansum AL1, involved in the biodeterioration of a historical manuscript. Biology, 12(7): 1025. Gupta O., Sing S., Bani S., Sharma N., Malhotra S., Gupta B., Banerjee S., and Handa S. (2000). Anti-inflammatory and anti-arthritic activities of silymarin acting through inhibition of 5-lipoxygenase. Phytomedicine, 7: 21-24. Harjai K., Bala A., Gupta R. K., and Sharma R. (2013). Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa. Pathogens and Disease, 69(1): 62-65. Huang H., and Yang X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research, 339: 2627-2631. Huang J., Li Q., Sun D., Lu Y., Su Y., et al. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18: 105104. Iranshahy M., Javadi B., Iranshahi M., Jahanbakhsh S. P., Mahyari S., Hassani F. V., and Karimi G. (2017). A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. Journal of Ethnopharmacology, 205: 158-172. Jacob S. J. P., Finub J., and Narayanan A. (2012). Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surfaces B: Biointerfaces, 91: 212-214. Jagtap U. B., and Bapat V. A. (2013). Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products, 46: 132-137. Jha A. K., Prasad K., Prasad K., and Kulkarni A. (2009). Plant system: nature’s nanofactory. Colloids and Surfaces B: Biointerfaces, 73: 219-223. Kalaiarasi R., Prasannaraj G., and Venkatachalam P. (2013). A rapid biological synthesis of silver nanoparticles using leaf broth of Rauvolfia tetraphylla and their promising antibacterial activity. Indo American Journal of Pharmaceutical Research, 3: 8052-8062. Kaviya S., Santhanalakshmi J., Viswanathan B., Muthumary J., and Srinivasan K. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79: 594-598. Khandel P., Shahi S. K., Soni D. K., Yadaw R. K., and Kanwar L. (2018). Alpinia calcarata: potential source for the fabrication of bioactive silver nanoparticles. Nano Convergence, 5: 1-17. Kim S. W., Jung J. H., Lamsal K., Kim Y. S., Min J. S., and Lee Y. S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40: 53-58. Kumar V., Yadav S. C., and Yadav S. K. (2010). Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. Journal of Chemical Technology & Biotechnology, 85: 1301-1309. Li Q., Mahendra S., Lyon D. Y., Brunet L., Liga M. V., Li D., and Alvarez P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 42: 4591-4602. Liperoti R., Vetrano D. L., Bernabei R., and Onder G. (2017). Herbal medications in cardiovascular medicine. Journal of the American College of Cardiology, 69: 1188-1199. Maiti S., Krishnan D., Barman G., Ghosh S. K., and Laha J. K. (2014). Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Journal of Analytical Science and Technology, 5: 1-7. Malekinejad H., Rezabakhsh A., Rahmani F., and Hobbenaghi R. (2012). Silymarin regulates the cytochrome P450 3A2 and glutathione peroxides in the liver of streptozotocin-induced diabetic rats. Phytomedicine, 19: 583-590. Mishra A., Kumari M., Pandey S., Chaudhry V., Gupta K., and Nautiyal C. (2014). Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresource Technology, 166: 235-242. Mittal A. K., Chisti Y., and Banerjee U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31: 346-356. Nikbakht M., and Pour Ali P. (2015). Biological Production and antibacterial effect of synthesized Ag with aqua extract and methanol anab. Medical Science Journal of Islamic Azad Univesity, 12: 112-118. Niveditha K., and Sukirtha T. (2018). Green synthesis, characterization and antimicrobial activity of silver nanoparticles from Plectranthus amboinicus plant extracts. Indian Journal of Medical Research and Pharmaceutical Sciences, 5: 2349-5340. Okafor F., Janen A., Kukhtareva T., Edwards V., and Curley M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10: 5221-5238. Poulose S., Panda T., Nair P. P., and Theodore T. (2014). Biosynthesis of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 14(2): 2038-2049. Pungle R., Nile S. H., Makwana N., Singh R., Singh R. P., and Kharat A. S. (2022). Green synthesis of silver nanoparticles using the Tridax Procumbens plant extract and screening of its antimicrobial and anticancer activities. Oxidative Medicine and Cellular Longevity, 2022: 9671594. Rahimi R., Nikfar S., Larijani B., and Abdollahi M. (2005). A review on the role of antioxidants in the management of diabetes and its complications. Biomedicine & Pharmacotherapy, 59: 365-373. Rajoriya P., Misra P., Singh V. K., Shukla P. K., and Ramteke P. W. (2017). Green synthesis of silver nanoparticles. Biotech Today: An International Journal of Biological Sciences, 7: 7-20. Roopan S. M., Madhumitha G., Rahuman A. A., Kamaraj C., Bharathi A., and Surendra T. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43: 631-635. Sajadi S. M., Nasrollahzadeh M., and Maham M. (2016). Aqueous extract from seeds of Silybum marianum L. as a green material for preparation of the Cu/Fe3O4 nanoparticles: a magnetically recoverable and reusable catalyst for the reduction of nitroarenes. Journal of Colloid and Interface Science, 469: 93-98. Salari S., Esmaeilzadeh Bahabadi S., Samzadeh-Kermani A., and Yosefzaei F. (2019). In-vitro evaluation of antioxidant and antibacterial potential of green-synthesized silver nanoparticles using Prosopis farcta fruit extract. Iranian Journal of Pharmaceutical Research, 18: 430-455. Sivalingam A. M., Pandian A., Rengarajan S., Ramasubbu R., Parasuraman G., Sugumar V., and Devaraj N. (2023). Extraction, biosynthesis, and characterization of silver nanoparticles for its enhanced applications of antibacterial activity using the Silybum marianum Linn. plant. Biomass Conversion and Biorefinery, 1-12. DOI: https://doi.org/10.1007/s13399-023-04907-1. Saratale G. D., Saratale R. G., Cho S.-K., Ghodake G., Bharagava R. N., Park Y., Mulla S. I., Kim D.-S., Kadam A., and Nair S. (2020). Investigation of photocatalytic degradation of reactive textile dyes by Portulaca oleracea-functionalized silver nanocomposites and exploration of their antibacterial and antidiabetic potentials. Journal of Alloys and Compounds, 833: 155083. Schulz V., Hänsel R., and Tyler V. E. (2001). Rational phytotherapy: a physician’s guide to herbal medicine. 4th Edition, Springer-Verlag, Berlin, Heidelberg. DOI: http://dx.doi.org/10.1007/978-3-642-98093-0. Sharma G., Sharma A. R., Lee S.-S., Bhattacharya M., Nam J.-S., and Chakraborty C. (2019). Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. International Journal of Pharmaceutics, 559: 360-372. Sharma N. C., Sahi S. V., Nath S., Parsons J. G., Gardea-Torresde J. L., and Pal T. (2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental Science & Technology, 41: 5137-5142. Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., and Dash D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18: 225103. Singh R., and Kumari N. (2020). Sapindus mukprossi Gaertn.: Rich source of antioxidants and reducing agents. Ethics and the Environment, 24: 38-46. Singh R. P., Gu M., and Agarwal R. (2008). Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Research, 68: 2043-2050. Sivakumar J., Premkumar C., Santhanam P., and Saraswathi N. (2011). Biosynthesis of silver nanoparticles using Calotropis gigantean leaf. African Journal of Basic & Applied Sciences (AJBAS), 3: 265-270. Škottová N., and Krečman V. (1998). Silymarin as a potential hypocholesterolaemic drug. Physiological Research, 47: 1-7. Tan M., Wang G., Ye Z., and Yuan J. (2006). Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling. Journal of Luminescence, 117: 20-28. Tripathy A., Raichur A. M., Chandrasekaran N., Prathna T., and Mukherjee A. (2010). Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research, 12: 237-246. Vickers N. J. (2017). Animal communication: when i’m calling you, will you answer too? Current Biology, 27: R713-R715. Vijayaraghavan K., Nalini S. K., Prakash N. U., and Madhankumar D. (2012). Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Materials Letters, 75: 33-35. Wang P., and Aguirre A. (2018). New strategies and in vivo monitoring methods for stem cell-based anticancer therapies. Stem Cells International, 2018: 7315218. | ||
آمار تعداد مشاهده مقاله: 875 تعداد دریافت فایل اصل مقاله: 237 |