تعداد نشریات | 20 |
تعداد شمارهها | 367 |
تعداد مقالات | 3,004 |
تعداد مشاهده مقاله | 4,032,351 |
تعداد دریافت فایل اصل مقاله | 2,686,444 |
Biostimulant impact of Trichoderma species on physiological characteristics of beans | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 12، شماره 2 - شماره پیاپی 24، دی 2023، صفحه 37-48 اصل مقاله (882.67 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2024.19355.1356 | ||
نویسندگان | ||
Zahra Rezalou1؛ Samira Shahbazi* 2؛ Ali Asghar Aliloo1؛ Abozar Ghorbani2 | ||
1Department of Plant Production and Genetics, Faculty of Agriculture, Maraghe University, Maraghe, Iran. | ||
2Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran. | ||
تاریخ دریافت: 04 مهر 1402، تاریخ بازنگری: 18 بهمن 1402، تاریخ پذیرش: 18 بهمن 1402 | ||
چکیده | ||
This research project is dedicated to investigating innovative strategies for reducing agrochemical usage and promoting sustainable agriculture. The primary focus of this study revolves around the development and evaluation of biostimulant products derived from Trichoderma fungus. To enhance the biostimulant properties of Trichoderma, gamma irradiation was employed to induce mutations in various Trichoderma species. Subsequently, three distinct biological fertilizers were formulated using five different Trichoderma species and their respective mutants. These bio-fertilizers underwent rigorous testing to evaluate their effects on the physiological characteristics of pinto bean plants. In total, seven experimental treatments were compared to a control group. Key parameters such as soluble protein content, chlorophyll levels, carotenoid concentrations, peroxidase, and polyphenol oxidase activities were measured and analyzed. Moreover, protein profiles and enzyme subunit activities were investigated to gain deeper insights into the mechanisms underlying the observed effects. The results of this study indicate that bio-priming seeds with a combination of Trichoderma spores resulted in the most significant improvements in chlorophyll content, carotenoid levels, and peroxidase activity. Additionally, mutants of Trichoderma species exhibited greater biostimulant effects compared to their wild-type counterparts. Notably, treatments involving kaolin-based granules demonstrated higher polyphenol oxidase activity. This research emphasizes the significant impact of Trichoderma-based treatments on the physiology of pinto bean plants. The induced mutations in Trichoderma species play a crucial role in enhancing efficacy. | ||
کلیدواژهها | ||
Bio priming؛ Biostimulants؛ Trichoderma؛ Phaseolus vulgaris | ||
عنوان مقاله [English] | ||
تاثیر محرک زیستی گونه تریکودرما بر ویژگیهای فیزیولوژیکی لوبیا | ||
نویسندگان [English] | ||
زهرا رضالو1؛ سمیرا شهبازی2؛ علی اصغر علیلو1؛ ابوذر قربانی2 | ||
1گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، ایران. | ||
2پژوهشکده کشاورزی هستهای، پژوهشگاه علوم و فنون هستهای، سازمان انرژی اتمی ایران، ایران. | ||
چکیده [English] | ||
این پروژه تحقیقاتی به مطالعه استراتژیهای نوآورانه کاهش مصرف سموم و کودهای شیمیایی در کشاورزی و توسعه کشاورزی پایدار اختصاص دارد. هدف این مطالعه، توسعه و ارزیابی فرمولاسیونهای مبتنی بر تریکودرما است. به منظور بهبود خصوصیات تریکودرما، از روش القای جهش از طریق پرتوتابی با پرتو گاما استفاده شد. سه فرمولاسیون مختلف از کود زیستی با استفاده از مخلوط پنج گونه مختلف تریکودرما (والد) و مخلوط جدایههای جهشیافته آنها تهیه شد. هفت تیمار با یک گروه کنترل مقایسه و پارامترهای کلیدی از جمله پروتئین کل، کلروفیل، کاروتنوئید، فعالیتهای پراکسیداز و پلیفنل اکسیداز اندازهگیری و آنالیز شد. علاوه بر این، پروفایلهای پروتئینی و آنزیمی گیاهان تحت تیمار با سه فرمولاسیون نیز مورد بررسی قرار گرفت تا درک عمیقتری از مکانیسمهای موثر در مشاهدات به دست آید. نتایج این مطالعه نشان میدهند که استفاده از فرمولاسیون پوششدهی بذر با مخلوط اسپورهای تریکودرمای جهشیافته، بهبود معناداری در میزان کلروفیل،کاروتنوئید و فعالیت پراکسیدازی دارد. علاوهبراین، فرمولاسیونهای مبتنی بر جدایههای جهشیافته تریکودرما نسبت به فرمولاسیونهای تهیه شده از تریکودرمای والد، اثرات محرک زیستی قویتری را نشان دادند. فرمولاسیون گرانول به طور قابل توجهی فعالیت پلیفنل اکسیدازی را افزایش داده بود. به طور کلی، این مطالعه نشان داد تیمار با تریکودرما بر فیزیولوژی لوبیای چیتی، تاثیر معنیداری داشته و کارایی روش القای جهش ژنتیکی از طریق پرتوتابی با پرتو گاما برای بهبود کارایی تریکودرما را تأیید نمود. | ||
کلیدواژهها [English] | ||
بیوپرایمینگ, محرک زیستی, تریکودرما, لوبیا | ||
مراجع | ||
Akıncıoğlu A., Akbaba Y., Göçer H., Göksu S., Gülçin İ., and Supuran C. T. (2013). Novel sulfamides as potential carbonic anhydrase isoenzymes inhibitors. Bioorganic & Medicinal Chemistry, 21(6): 1379-1385. Ali S., Khan M. J., Anjum M. M., Khan G. R., and Ali N. (2022). Trichoderma harzianum modulates phosphate and micronutrient solubilization in the rhizosphere. Gesunde Pflanzen, 74(4): 853-62. Altomare C., Norvell W. A., Björkman T., and Harman G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum rifai. Applied and Environmental Microbiology, 65(7): 2926-2933. Amini Y., Mohammadi A., and Zafari D. (2014). Trichoderma species associated with medicinal plants. International Journal of Advanced Biological and Biomedical Research, 2(9): 2566-2568. Anshu A., Agarwal P., Mishra K., Yadav U., Verma I., Chauhan S., Srivastava P. K., and Singh P. C. (2022). Synergistic action of Trichoderma koningiopsis and T. asperellum mitigates salt stress in paddy. Physiology and Molecular Biology of Plants, 28(5): 987-1004. Arnon A. N. (1967). Method of extraction of chlorophyll in the plants. Agronomy Journal, 23(1): 112-121. Arredondo-Peter R., and Escamilla E. (1993). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein banding patterns among Rhizobium leguminosarum biovar phaseoli strains isolated from the Mexican bean Phaseolus coccineus. Applied and Environmental Microbiology, 59(11): 3960-3962. Bae H., Sicher R. C., Kim M. S., Kim S. H., Strem M. D., Melnick R. L., and Bailey B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60(11): 3279-3295. Barker R. D., Derbyshire E., Yarwood A., and Boulter D. (1976). Purification and characterization of the major storage proteins of Phaseolus vulgaris seeds, and their intracellular and cotyledonary distribution. Phytochemistry, 15(5): 751-757. Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254. Darikvand F., Bazgir A., Darvishnia M., and Mirzaei H. (2015). Isolation and identification of Trichoderma fungi and investigation of its effect on bean plant growth. Agricultural Research Conference, Genetic Engineering and Medicinal Plant Iran, Jiroft. Das S., Das S., and Ghangrekar M. M. (2022). Bacterial signalling mechanism: an innovative microbial intervention with multifaceted applications in microbial electrochemical technologies: a review. Bioresource Technology, 344: 126218. Dazy M., Jung V., Férard J. F., and Masfaraud J. F. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implications in site restoration. Chemosphere, 74(1): 57-63. Deng H., Li Q., Cao R., Ren Y., Wang G., Guo H., Bu S., Liu J., and Ma P. (2023). Overexpression of SmMYC2 enhances salt resistance in Arabidopsis thaliana and Salvia miltiorrhiza hairy roots. Journal of Plant Physiology, 280: 153862. Djonović S., Pozo M. J., Dangott L. J., Howell C. R., and Kenerley C. M. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Molecular Plant-Microbe Interactions, 19(8): 838-853. Edreva A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: A submolecular approach. Agriculture, Ecosystems and Environment, 106: 119-133. Elhelaly S. H. (2022). The effectiveness of the bacteria Rhizobium leguminosarum against bean yellow mosaic (BYMV) potyvirus infecting faba bean (Vicia faba L.) Plants. Annals of Agricultural Science, Moshtohor, 60(1): 181-190. Entesari M., Sharifzadh F., Dashtaki M., and Ahmadzadeh M. (2013). Effects of biopriming on the germination traits, physiological characteristics, antioxidant enzymes and control of Rhizoctonia solani of a bean cultivar (Phaseolus vulgaris L.). Iranian Journal of Field Crop Science, 44(1): 35-45. Eslahi N., Kowsari M., Zamani M. R., and Motallebi M. (2021). Correlation study between biochemical and molecular pathways of Trichoderma harzianum recombinant strains on plant growth and health. Journal of Plant Growth Regulation, 41: 1561-1577. Eslahi N., Kowsari M., Motallebi M., Zamani M. R., and Moghadasi Z. (2020). Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L) by increased root colonization and induction of root growth-related genes. Scientia Horticulturae, 261: 108932. FAO. (2021). FAO statistical year book. World Food and Agriculture Organization of the United Nation, Rome, pp. 366. Gaderer R., Lamdan N. L., Frischmann A., Sulyok M., Krska R., Horwitz B. A., and Seidl-Seiboth V. (2015). Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiology, 15: 1-9. Giri B., Prasad R., Wu Q. S., and Varma A. (Eds.). (2019). Biofertilizers for sustainable agriculture and environment. Cham: Springer International Publishing, pp. 544. DOI: https://doi.org/10.1007/978-3-030-18933-4. Guler N. S., Pehlivan N., Karaoglu S. A., Guzel S., and Bozdeveci A. (2016). Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiologiae Plantarum, 38: 132. Hermosa R., Viterbo A., Chet I., and Monte E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158(1): 17-25. Howell C. R., Hanson L. E., Stipanovic R. D., and Puckhaber L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90(3): 248-252. Irannezhad A., Vatanpour Azghandi A., Rahnama H., Jaliani N., and Bozorgipour R. (2010). Improvement of rooting and aclimatization of tissue cultured plantlets of olive (Olea europaea L. cv. Zard) by Agrobacterium rhizogenes. Seed and Plant Production Journal, 26(1): 85-93. Jeyarajan R., and Nakkeeran S. (2000). Exploitation of microorganisms and viruses as biocontrol agents for crop disease management. In: Biocontrol Potential and its Exploitation in Sustainable Agriculture: Crop Diseases, Weeds, and Nematodes, Boston, MA: Springer US, 95-116. Karaman K., Bekiroglu H., Kaplan M., Çiftci B., Yürürdurmaz C., and Sagdic O. (2022). A detailed comparative investigation on structural, technofunctional and bioactive characteristics of protein concentrates from different common bean genotypes. International Journal of Biological Macromolecules, 200: 458-469. Khan M. U., Qasim M., and Jamil M. (2002). Effect of different levels of zinc on the extractable zinc content of soil and chemical composition of rice. Asian Journal of Plant Sciences, 1: 20-21. Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680-685. Li C., Li J., Yan S., and Wang Q. (2022). The mechanism of interaction between lotus rhizome polyphenol oxidase and ascorbic acid: Inhibitory activity, thermodynamics, and conformation analysis. Journal of Food Biochemistry, 46(5): e14047. Li H., Zou L., Li X. Y., Wu D. T., Liu H. Y., Li H. B., and Gan R. Y. (2022). Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Comprehensive Reviews in Food Science and Food Safety, 21(3): 2335-2362. Li L., and Steffens J. C. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215: 239-247. Majnoun Hosseini N., and Naghavi M. R. (2017). Genetic variation for seed yield and biomass in some lentil genotypes (Lens culinaris). Iranian Journal of Field Crop Science, 48(3): 665-671. Mardani-Mehrabad H., Rakhshandehroo F., Shahbazi S., and Shahraeen N. (2020). Enhanced tolerance to seed-borne infection of bean common mosaic virus in salicylic acid treated bean plant. Archives of Phytopathology and Plant Protection, 54(7-8): 388-410. Marzol E., Borassi C., Carignani Sardoy M., Ranocha P., et al. (2022). Class III peroxidases PRX01, PRX44, and PRX73 control root hair growth in Arabidopsis thaliana. International Journal of Molecular Sciences, 23(10): 5375. Michel-López C. Y., Delgadillo-Ruíz L., Cabral-Arellano F. J., Esparza-Ibarra E., and Flores-Garivay R. (2022). Effect of mercury exposure on u1-70 kda protein expression in embryos of black bean (Phaseolus vulgaris L.). Química Nova, 45: 797-802. Moeini Alishah M., Yıldız S., Bilen Ç., and Karakuş E. (2023). Purification and characterization of avocado (Persea americana) polyphenol oxidase by affinity chromatography. Preparative Biochemistry & Biotechnology, 53(1): 40-53. Mortezania H., Rouhani H., and Sahebani N. (2010). Study of peroxidase enzyme activity induced by Trichoderma harzianum Bi in cucumber seedling and its effect in the control of root and foot rot caused by Pythium aphanidermatum. Journal of Plant Protection, 24(3): 258-268. Musin K. G., Gumerova G. R., Baimukhametova E. A., and Kuluev B. R. (2022). Growth and stress resistance of tobacco hairy roots with constitutive expression of ARGOS-LIKE gene. Russian Journal of Plant Physiology, 69(5): 92. Nar M., Çetinkaya Y., Gülçin İ., and Menzek A. (2013). (3, 4-Dihydroxyphenyl) (2, 3, 4-trihydroxyphenyl) methanone and its derivatives as carbonic anhydrase isoenzymes inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(2): 402-406. Oancea F., Raut I., Şesan T. E., and Cornea P. C. (2016). Dry flowable formulation of biostimulants Trichoderma strains. Agriculture and Agricultural Science Procedia, 10: 494-502. Orojnia S., Habibi D., Shahbazi S., Paknejad F., and Ilkaee M. N. (2021). Investigation of biological control of Trichoderma formulations and its mutant type related to chemical treatments in the control of soybean charcoal rots. Romanian Agricultural Research, 38: 419-427. Rezaloo Z., Shahbazi S., and Askari H. (2020). Biopriming with Trichoderma on Germination and vegetative characteristics of sweet corn, sugar beet and wheat. Iranian Journal of Seed Science and Technology, 8(2): 199-210. Rezvankhah A., Yarmand M. S., and Ghanbarzadeh B. (2022). The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: Antioxidant, antihypertension, and antidiabetic activities. Journal of Food Measurement and Characterization, 16(5): 3743-3759. Rostaminia M., Habibi D., Shahbazi S., Sani B., and Pazoki A. (2021). Effect of different species of Pseudomonas and Trichoderma on several morpho-physiological traits of roselle (Hibiscus sabdariffa L.). Acta Physiologiae Plantarum, 43: 1-8. Rudresh D. L., Shivaprakash M. K., and Prasad R. D. (2005). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Applied Soil Ecology, 28(2): 139-146. Rui X., Boye J. I., Ribereau S., Simpson B. K., and Prasher S. O. (2011). Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseolus vulgaris legume varieties. Food Research International, 44(8): 2497-2504. Salahi Ostad M., Abedi B., and Salahvarzi Y. (2021). Effect of Trichoderma harzianum application on biochemical properties and photosynthetic pigments of basil plant under drought stress. Horticultural Sciences of Iran, 52(4): 999-1009. Sepehri G., Mojerlou S., and Shahbazi S. (2021). Identification of bean root rot casual and associated fungal agents in Khomein county, Markazi province, Iran. Journal of Crop Protection, 10(4): 633-646. Soufi E., Safaie N., Shahbazi S., and Mojerlou S. (2021). Gamma irradiation induces genetic variation and boosting antagonism in Trichoderma aureoviride. Archives of Phytopathology and Plant Protection, 54(19-20): 1649-1674. Taheri P., and Tarighi S. (2011). A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. Journal of Plant Physiology, 168(10): 1114-1122. Van Loon L. C., Rep M., and Pieterse C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44: 135-162. Vargas-Mendoza N., Morales-González Á., Madrigal-Santillán E. O., Madrigal-Bujaidar E., et al. (2019). Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants, 8(6): 196. Vinale F., Sivasithamparam K., Ghisalberti E. L., Ruocco M., Woo S., and Lorito M. (2012). Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications, 7: 1545-1550. DOI: 10.1177/1934578X1200701133. Yedidia I., Srivastava A. K., Kapulnik Y., and Chet I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235(2): 235-242. Yıldız S., Bilen Ç., and Karakuş E. (2022). Purification of damson plum polyphenol oxidase by affinity chromatography and investigation of metal effects on enzyme activity. Preparative Biochemistry & Biotechnology, 52(9): 1019-1034. Zenin C. T., and Park Y. K. (1978). Isoenzymes of polyphenol oxidase from high l‐Dopa containing velvet bean. Journal of Food Science, 43(2): 646-647. | ||
آمار تعداد مشاهده مقاله: 604 تعداد دریافت فایل اصل مقاله: 181 |