
تعداد نشریات | 20 |
تعداد شمارهها | 396 |
تعداد مقالات | 3,208 |
تعداد مشاهده مقاله | 4,510,392 |
تعداد دریافت فایل اصل مقاله | 3,055,241 |
Assessment of genetic diversity among local accessions of melon and identification of DNA markers linked with agro-morphological characteristics | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 13، شماره 2 - شماره پیاپی 26، دی 2024، صفحه 11-20 اصل مقاله (795.78 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2025.20366.1371 | ||
نویسندگان | ||
Pedram Ajalli1؛ Nasser Mohebalipour* 1؛ Hassan Nourafcan2؛ Hamid HatamiMaleki3؛ Ali Faramarzi1 | ||
1Department of Agronomy and Plant Breeding, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran. | ||
2Department of Horticulture, Medicinal Plants and Organic Products Research Center, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran. | ||
3Department of Plant production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran. | ||
تاریخ دریافت: 24 خرداد 1403، تاریخ بازنگری: 22 آذر 1403، تاریخ پذیرش: 27 دی 1403 | ||
چکیده | ||
In this project, 14 local melon accessions were collected from five regions of Iran and examined in a randomized complete block design with three replications in the field over two consecutive years. The combined analysis of variance showed significant differences between accessions for the majority of characters, including days to flowering, flower petal width, fruit ripening time, peduncle diameter, fruit storage at room temperature, seed width, and seed length. The interaction effect of genotype×year was significant for variables including days to flowering, leaf tail length, number of seeds per fruit, thickness of fruit flesh, fruit fresh weight, 100-seed weight, and fruit width. Among the studied characters, fruit fresh weight and fruit length were selected through stepwise regression as remarkable variables that have direct and indirect effects, respectively, on total fruit yield. Regarding principal component analysis, the first two principal components (PCs) explained 54.5% of the data variability, and the studied accessions were distinguished into two groups based on their PC1 and PC2 scores. Using 12 RAPD primers, 146 loci were amplified across the studied melon accessions. Results showed that primer OPB13, with a polymorphism information content value of 0.38, has significant power in screening local melon germplasm. Classification of the studied melon panel using the Jaccard similarity coefficient and UPGMA algorithm produced three main groups. In this study, molecular classification did not coincide with agro-morphological classification. Here, co-localized genomic loci were identified that could potentially be utilized in local melon breeding programs through marker-assisted selection. | ||
کلیدواژهها | ||
Genetic variability؛ Marker-trait association؛ RAPD marker؛ Stepwise regression | ||
عنوان مقاله [English] | ||
بررسی تنوع ژنتیکی در میان تودههای بومی ملون و تعیین نشانگرهای DNA مرتبط با خصوصیات آگرومورفولوژیک | ||
نویسندگان [English] | ||
پدرام اجلی1؛ ناصر محبعلی پور1؛ حسن نورافکن2؛ حمید حاتمی ملکی3؛ علی فرامرزی1 | ||
1گروه زراعت و اصلاح نباتات، واحد میانه، دانشگاه آزاد اسلامی، میانه، ایران. | ||
2گروه علوم باغبانی، مرکز تحقیقات گیاهان دارویی و محصولات ارگانیک، واحد میانه، دانشگاه آزاد اسلامی، میانه، ایران. | ||
3گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران. | ||
چکیده [English] | ||
در این پروژه 14 توده خربزه محلی از 5 منطقه ایران جمع آوری و در قالب طرح RCBD با سه تکرار در حالت مزرعه طی دو سال متوالی مورد بررسی قرار گرفت. تجزیه و تحلیل ترکیبی واریانس تفاوت معنیداری را بین اکسشنها برای اکثر صفات از جمله DF، FPW، FRT، PD، FSRT، SW و SL نشان داد. اثر متقابل ژنوتیپ × سال برای متغیرهای 50% DF، LTL، NSPF، TFF، FFW، 100 SW و FW معنیدار تشخیص داده شد. از بین صفات مورد مطالعه، FFW و FL با استفاده از رگرسیون گام به گام به عنوان متغیر قابل توجه انتخاب شدند که به ترتیب تأثیر مستقیم و غیرمستقیم بر عملکرد کل میوه خربزه دارند. با توجه به تجزیه و تحلیل PCA، دو PC اول 54.5 درصد از تنوع داده ها را توضیح دادند و پیوست های مورد مطالعه بر اساس امتیاز PC1 و PC2 در دو گروه تفکیک شدند. با استفاده از 12 پرایمر RAPD، 146 جایگاه از طریق توده های خربزه مورد مطالعه تکثیر شد. نتایج نشان داد پرایمر OPB13 با مقدار PIC 0.38 قدرت قابل توجهی در غربالگری ژرم پلاسم محلی خربزه دارد. طبقه بندی پانل خربزه مورد مطالعه با استفاده از ضریب شباهت جاکارد و الگوریتم UPGMA سه گروه اصلی را تولید کرده است. در این مطالعه، طبقه بندی مولکولی با طبقه بندی زراعی-مورفولوژیکی منطبق نبود. تجزیه و تحلیل ارتباط نشانگر-ویژگی جایگاه های ژنومی هم موضعی را نشان داد که به طور بالقوه می توانند در برنامه های اصلاح نژاد خربزه از طریق انتخاب به کمک نشانگر مورد استفاده قرار گیرند. | ||
کلیدواژهها [English] | ||
تنوع ژنتیکی, رگرسیون گام به گام, نشانگر RAPD, ارتباط صفت-نشانگر | ||
مراجع | ||
Amiteye S. (2021). Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 30: e08093. Andradea I. S., de Meloa C. A. F., Nunesb G. H. S., Holandab I. S. A., Grangeirob L. C., and Corrêa R. X. (2019). Morphoagronomic genetic diversity of Brazilian melon accessions based on fruit traits. Scientia Horticulturae, 243: 514-523. Aragao F. A. S., Torres Filho J., Nunes G. H. S., Queiróz M. A., et al. (2013). Genetic divergence among accessions of melon from traditional agriculture of the Brazilian Northeast. Genetic and Molecular Research, 12: 6356-6371. Blanca J. M., Esteras C., Areitioaurtena P. Z., Perez D., et al. (2012). Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics, 13: 280. Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y., and Buckler E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23: 2633-2635. Darvishzadeh R., Basirnia A., Hatami Maleki H., and Jafari M. (2014). Association mapping for resistance to powdery mildew in oriental tobacco (Nicotiana tabaccum L.) germplasm. Iranian Journal of Genetics and Plant Breeding, 3: 30-21. Decker-Walters D. S., Chung S. M., Staub J. E, Quemada H. D., and Lo´pez-Sese A. I. (2002). The origin and genetic affinities of wild populations of melon (Cucumis melo, Cucurbitaceae) in North America. Plant Systematic and Evolution, 233:183-197. Dhillon N. P. S., Ranjana R., Singh K., Eduardo I., et al. (2007). Diversity among landraces of Indian snapmelon (Cucumis melo var. Momordica. Genetic Resource and Crop Evolution, 54: 1267-1283. Ermiş S., and Aras V. (2017) Morphologic characterization and determination of degree of relationships melon (Cucumis melo L.) varieties. Academic Journal of Agriculture, 6:171-178. Fabriki Ourang S., Shams-Bakhsh M., Jalali Javaran M., and Ahmadi J. (2009). Analysis of genetic diversity of Iranian melons (Cucumis melo L.) using ISSR markers. Iranian Journal of Biology, 22: 1-13. Falconer D. S., Mackay T. F., Frankham R. (1996). Introduction to quantitative genetics. Trends in Genetics, 12: 280. Shamasbi F. V., Dehestani A., Golkari S. and Haghpanah M. (2017). Assessment of genetic diversity and structure in the wild melon (Cucumis melo var. agrestis) genotypes from Southern Coastline of Caspian Sea using AFLP markers. Journal of Crop Breeding, 9: 67-75. Feyzian E., Jalali-Javaran M., Dehghani H., and Zamyad H. (2007). Analysis of the genetic diversity among some of Iranian melons (Cucumis melo L.) landraces using morphological and RAPD molecular markers. Journal of Science and Technology of Agriculture and Natural Resources, 11: 151-162. (In Persian) Fulton T. M., Chunwongse J., and Tanksley S. D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Report, 13: 207-209. Guliyev N., Sharifova S., Ojaghi J., Abbasov M., and Akparov Z. (2018). Genetic diversity among melon (Cucumis melo L.) accessions revealed by morphological traits and ISSR markers. Turkish Journal of Agriculture and Forestry, 42: 393-401. Hatami Maleki H., Mohammadi R., Firouzkuhi F., Darvishzadeh R., and Zeinalzadeh-Tabrizi H. (2023). Molecular evidence depicts genetic divergence among Agropyron elongatum and A. cristatum accessions from gene pool of Iran. PLOS One, 18: e0294694. Hatami Maleki H., Karimzadeh G., Darvishzadeh R., and Sarrafi A. (2011). Correlation and sequential path analysis of some agronomic traits in tobacco (’Nicotiana tabaccum’ L.) to improve dry leaf yield. Australian Journal of Crop Science, 5: 1644-1648. Huo Z. M., Yan X. W., and Zhao L. Q. (2010). Effects of shell morphological traits on the weight traits of Manila clam Ruditapes philippinarum. Acta Ecologica Sinica, 30: 251-256. John K. J. (2012). On the occurrence, distribution, taxonomy and gene pool relationship of Cucumis callosus (Rottler) Cogn the wild progenitor of Cucumis melo L. From India. Genetic Resource and Crop Evolution, 59: 1-10 Macedo S. S., Queiróz M. A., Aquino I. P. F., Oliveira R. S., Neto I. S. L. (2017). Botanical identification and genetic diversity in melons from family farming in the state of Maranhao. Revista Caatinga, Mossoro, 30: 602-613. Napolitano M., Terzaroli N., Kashyap S., Russi L., Jones-Evans E., and Albertini E. (2020). Exploring heterosis in melon (Cucumis melo L.). Plants, 9: 282. Pritchard J. K., Stephanes M., Rosenberg N. A., and Donnelly P. (2000). Association mapping in structured populations. American Journal of Human Genetics, 67: 170-181. Solmaz I., Sari N., Kacar Y., and Şimşek A. (2016). Genetic diversity within Turkish watermelon Citrullus lanatus accessions revealed by SSR and SRAP markers. Turkish Journal of Agriculture and Forestry, 40: 407-419. Soltani F., Shajari M., Mirbehbahani G. S., and Bihamta M. R. (2022). Assessment of melon genetic diversity based on fruit phenotypic traits and flowering habits. International Journal of Horticultural Science and Technology, 9: 97-116. Stepansky A., Kovalski I., and Perl-Treves R. (1999). Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Systematic and Evolution, 217: 313-333. Szamosi C., Solmaz I., Sari N., and Barsony C. (2010). Morphological evaluation and comparison of Hungarian and Turkish melon (Cucumis melo L.) germplasm. Scientia Horticulturae, 124: 170-182 Tanaka K., Nishitani A., Akashi Y., Sakata Y., Nishida H., Yoshino H., and Kato K. (2007). Molecular characterization of South and East Asian melon, Cucumis melo L., and the origin of Group Conomon var. makuwa and var. conomon revealed by RAPD analysis. Euphytica, 153: 233-247. Tzitzikas E. N., Monforte A. J., Fatihi A., Kypriotakis Z., Iacovides T. A., Ioannides I. M., and Kalaitzis P. (2009). Genetic diversity and population structure of traditional Greek and Cypriot melon cultigens (Cucumis melo L.) based on simple sequence repeat variability. Horticulture Science, 44: 1820-1824 Wada K. T. (1986). Genetic selection for shell traits in the Japanese pearl oyster, Pinctada fucata martensii. Aquaculture, 57: 171-176. Zalapa J. E., Staub J. E., and McCreight J. D. (2008). Variance component analysis of plant architectural traits and fruit yield in melon. Euphytica, 162: 129-143. | ||
آمار تعداد مشاهده مقاله: 88 تعداد دریافت فایل اصل مقاله: 38 |