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ABSTRACT INFO ABSTRACT

Research Paper Antibiotic-resistant bacteria, particularly Streptococcus pyogenes, which is 
responsible for a wide array of diseases, represent a significant public health 
threat. Natural therapeutic agents derived from medicinal plants, notably essential 
oils, have garnered interest due to their potential antimicrobial properties. 
This study investigated the antibacterial activity of secondary metabolites 
from sixteen medicinal plants against Streptococcus pyogenes through 
bioinformatics approaches. A comprehensive insilco analysis was conducted 
on 890 phytochemicals to evaluate their interactions with the bacterial 
transpeptidase enzyme via molecular docking and molecular dynamics (MD) 
simulations. The transpeptidase enzyme sequence was subjected to various 
analytical procedures, including the ProtParam tool, EMBOSS Antigenic 
program, and VICMpred server. ProtParam analysis revealed that the enzyme 
has a molecular weight of 23.54 kDa, comprises 206 amino acids, with an 
isoelectric point (pI) of 6.24, an instability index of 31.21, and an aliphatic index 
of 83.25. The EMBOSS Antigenic program predicted eleven potential antigenic 
sites within the enzyme, with scores indicating cellular process involvement 
(1.1164), molecular information (-1.5058), molecular metabolism (-0.965), and 
virulence factors (-0.686). Molecular docking results identified that compounds 
from licorice, barberry, turmeric, plantain, nettle, cinnamon, aloe vera, and thyme 
exhibited significant binding affinities, with interaction energies ranging from -7.0 
to -9.3 kcal/mol. Nineteen phytochemicals, including methoxyhydnocarpine, 
linalyl acetate, kaempferol, and glycyrrhizic acid, demonstrated high binding 
affinity and stability. MD simulations further confirmed that the enzyme-
ligand complexes maintained considerable stability throughout the simulation 
duration. Additionally, the investigated molecules displayed favorable total 
interaction energies, spanning from -4.55507 to -90.562 kcal/mol. Collectively, 
these findings suggest that the identified natural compounds possess promising 
antibacterial potential, warranting further experimental validation and drug 
development efforts.
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INTRODUCTION
Medicinal plants have historically served as a vital 
resource for drug discovery and development. Since 
ancient times, a diverse array of plant species has been 
utilized therapeutically in traditional medicine systems 
worldwide. Notable examples include garlic (Allium 
sativum), ginger (Zingiber officinale), cloves (Syzygium 
aromaticum), cardamom (Elettaria cardamomum), 
mint (Mentha spp.), and coriander (Coriandrum 
sativum). Contemporary research underscores the 
significance of plant-derived compounds, with nearly 
a quarter of drugs approved by the U.S. Food and Drug 
Administration (FDA) and the European Medicines 
Agency (EMA) originating from plant sources 
(Thomford et al., 2018). These findings highlight the 
critical role of phytochemicals as a promising reservoir 
for novel therapeutic agents.

The rising prevalence of antimicrobial resistance 
(AMR), driven primarily by the overuse and misuse 
of antibiotics, has led to the emergence of multidrug-
resistant (MDR) pathogens, posing an urgent global 
health challenge. This situation underscores the 
necessity of exploring alternative antimicrobial agents. 
Phytochemicals, characterized by their structural 
diversity and multi-target effects, interfere with essential 
cellular processes in pathogens, thereby offering a 
potentially effective strategy to combat AMR. For 
instance, Ashraf et al. (2023) identified 123 Himalayan 
medicinal plants containing bioactive phytochemicals 
with antimicrobial potential, emphasizing the 
importance of investigating plant-derived compounds 
as alternatives to synthetic antibiotics.

Despite their promise, significant challenges 
remain in the extraction, structural characterization, 
and clinical translation of phytochemicals. 
Critical steps such as establishing safety profiles, 
pharmacokinetics, and therapeutic efficacy must 
be addressed to facilitate their integration into 
clinical practice (Borkotoky and Banerjee, 2020). 
In this context, bioinformatics-based approaches—
including molecular docking, molecular dynamics 
(MD) simulations, and quantitative structure-activity 

relationship (QSAR) analyses—offer efficient, cost-
effective tools for screening potential antimicrobial 
agents. Virtual screening accelerates drug discovery 
by identifying promising candidates within large 
chemical libraries, thereby reducing time and resource 
expenditures (Blundell et al., 2006; Shakeran and 
Nosrati, 2019; Yırtıcı et al., 2022).

Recent advances have increasingly recognized the 
vital role of bioinformatics in addressing persistent 
pathogens and complex diseases. For example, 
subtractive proteomics has facilitated the identification 
of novel drug targets in Chlamydia pneumoniae, a 
major causative agent of pneumonia and chronic 
conditions such as asthma. Through virtual screening 
of approximately 15,000 phytochemicals, coupled with 
molecular docking and MD simulations, researchers 
identified promising inhibitors targeting key bacterial 
proteins (Kadi et al., 2022). Similarly, Islam et al. 
(2024) employed bioinformatics tools to screen 2,500 
compounds derived from 25 medicinal plants for 
potential treatments of Alzheimer’s disease (AD). 
Their analysis identified 80 candidates with favorable 
pharmacological properties, among which three 
compounds (CID 102267534, CID 15161648, and 
CID 12441) demonstrated strong binding affinity to 
acetylcholinesterase (AChE), supported by molecular 
docking, MD simulations, and density functional 
theory (DFT) calculations, suggesting their potential 
as AD therapeutics.

In the realm of infectious diseases, Streptococcus 
pyogenes (group A streptococcus), a Gram-positive 
pathogen, causes a spectrum of diseases ranging from 
mild infections to severe invasive conditions such as 
necrotizing fasciitis. It produces numerous virulence 
factors, including sortase—a cysteine transpeptidase 
critical for anchoring surface proteins involved in 
adhesion, immune evasion, and colonization. This 
enzyme, with the PDB ID 3PSQ, facilitates the 
attachment of surface proteins to the bacterial cell 
wall and plays a pivotal role in pathogenicity and 
persistence (Kang et al., 2011). If left untreated, 
infections with S. pyogenes can lead to serious post-
infectious complications, including rheumatic fever 
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and glomerulonephritis, with potential long-term 
health consequences (Guilherme et al.,2006).

The current study aims to investigate the 
binding interactions of 890 compounds derived 
from 16 medicinal plants with the active site of S. 
pyogenes sortase. Specifically, molecular docking 
and MD simulations will be employed to identify 
potential inhibitors that demonstrate strong binding 
affinity and stable interactions within the enzyme’s 
active site, thereby contributing to the search for novel 
antimicrobial agents targeting S. pyogenes.

MATERIALS AND METHODS

Collecting primary data
To facilitate molecular binding analyses, the three-
dimensional structures of 890 phytochemical 
compounds derived from 16 medicinal plant species—
including thyme (Thymus vulgaris), aloe vera (Aloe 
barbadensis), clove (Syzygium aromaticum), plantain 
(Plantago major), cinnamon (Cinnamomum verum), 
barberry (Berberis vulgaris), eucalyptus (Eucalyptus 
globulus), ginger (Zingiber officinale), hyssop 
(Hyssopus officinalis), sage (Salvia officinalis), nettle 
(Urtica dioica), turmeric (Curcuma longa), licorice 
(Glycyrrhiza glabra), violet (Viola odorata), oregano 
(Origanum vulgare), and mangrove (Rhizophora 
spp.)—were retrieved from the PubChem (https://
pubchem.ncbi.nlm.nih.gov/) and DrugBank (https://
go.drugbank.com/) databases. All structures were 
downloaded in Structure Data File (SDF) format.

The primary structure of the cysteine transpeptidase 
sortase enzyme (PDB ID: 3PSQ) was obtained from 
the Protein Data Bank (https://www.rcsb.org/). Both 
the ligands and the target protein were subsequently 
prepared for molecular docking analyses using DS 
Visualizer, UCSF Chimera, and AutoDockTools 
software.

The crystal structure of 3PSQ (Spy0129/SrtC1 
from Streptococcus pyogenes) was selected based on 
the following key considerations:

•	Critical role in bacterial virulence and pilus 
assembly

SrtC1 is a class B sortase enzyme that mediates 
the covalent linkage of pilin subunits within S. 
pyogenes pili, which are crucial in bacterial 
adhesion, colonization, and pathogenicity. Unlike 
the housekeeping sortase SrtA, SrtC1 specifically 
facilitates pilus biogenesis, rendering it an attractive 
target for antimicrobial strategies aimed at impairing 
bacterial infectivity (Kang et al., 2011).

•	Pathogen-specific therapeutic potential
Streptococcus pyogenes is a clinically important 

pathogen, and sortases are absent in human hosts, 
thus minimizing potential off-target effects in drug 
development (Mangal et al., 2023). Prior computational 
investigations, including docking and MD simulations 
targeting S. pyogenes SrtC, have demonstrated the 
viability of using sortase enzymes as targets in virtual 
screening approaches—further supporting their 
relevance in this study involving phytochemicals from 
16 plant species.

Transpeptidase enzyme sequence analysis
The amino acid sequence of the transpeptidase enzyme 
from Streptococcus pyogenes (PDB ID: 3PSQ) was 
obtained from the UniProt protein sequence database 
(https://www.uniprot.org/). Key physicochemical 
properties of the enzyme were calculated using the 
ProtParam tool (https://web.expasy.org/protparam/), 
including amino acid composition, molecular weight 
(MW), theoretical isoelectric point (pI), instability 
index (II), and aliphatic index (AI). Additionally, 
potential antigenic determinants were predicted 
using the EMBOSS Antigenic server (https://www.
bioinformatics.nl/cgi-bin/emboss/antigenic?_pref_
hide_optional=1). To further characterize the protein, 
the VICMpred server (https://webs.iiitd.edu.in/
raghava/vicmpred/help.html) was employed to predict 
its functional class, providing insights into the nature 
and role of the enzyme.

Preparation of ligands and protein for docking
The preparation of ligands and the target protein for 
molecular docking was conducted through a series of 
meticulous steps to ensure accuracy and reproducibility. 
Initially, cofactors and water molecules were removed 
from the protein and ligand structures using Visualizer 
5.3 (Hanwell et al., 2012). Subsequently, all ligands 
and receptor molecules underwent three-dimensional 
structure optimization using UCSF Chimera (Pettersen 
et al., 2004), with the aim of obtaining the most stable 
conformations with minimized energy.

Ligand preparation for docking was performed using 
AutoDockTools (Morris et al., 2009). This process 
involved calculating Gasteiger-Marsili partial charges, 
adding hydrogens (including non-ionized hydrogens), 
and defining rotatable bonds and the centroid of 
each ligand molecule. Further energy minimization, 
hydrogen addition, and torsion adjustments were 
carried out, with the finalized structures saved in pdbqt 
format.

The protein structure was prepared in a similar 
manner with AutoDockTools. Hydrogens were added, 
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and the molecule’s total charge was assigned using 
the Kollman united-atom charge scheme. Non-ionized 
hydrogens were added to appropriate carbon atoms, 
and non-essential parts were removed prior to docking 
setup. The finalized protein structure was converted 
into pdbqt format for subsequent docking procedures 
with AutoDock Vina (Trott and Olson, 2010).

To define the binding site, the CASTp server (http://
sts.bioe.uic.edu/castp/index.html) was employed to 
identify potential cavities, and PyMOL was used to 
visualize and precisely determine the binding site center 
for docking simulations. All docking computations 
employed an iterative local search optimization 
algorithm, treating the protein as a rigid receptor and 
the ligands as flexible entities.

Molecular docking analysis
Molecular docking was performed using AutoDock 
Vina to predict the binding conformations and affinities 
of ligands within the active sites of the target proteins. 
The resulting ligand-receptor complexes, including 
binding poses, orientations, and interaction energies, 
were visualized and analyzed using BIOVIA Discovery 
Studio (version 2020). To further characterize the 
specific molecular interactions—such as hydrogen 
bonding and hydrophobic contacts—LigPlot+ v.2.2.5 
was employed, enabling the identification of key 
amino acid residues involved in ligand binding and 
stabilization.

Molecular dynamics simulation
Compounds exhibiting high binding affinity from 
molecular docking analyses were subjected to further 
molecular dynamics (MD) simulations to evaluate their 
stability and interaction profiles over time. Simulations 
were performed using GROMACS 2020 on a Linux 
operating system.

Ligand topologies were generated via the CHARMM 
General Force Field (CGenFF) server, which requires 
input structures in Sybyl. mol2 format to obtain atomic 
types and bond connectivity parameters. CGenFF 
provides an all-atom force field that explicitly 
represents hydrogen atoms, which are often absent in 
crystal structures, thereby ensuring accurate modeling 
of ligand interactions. The Avogadro software was 
employed to generate the mol2 files and incorporate 
missing hydrogen atoms. The protein topology 
was constructed using the pdb2gmx utility within 
GROMACS.

The CHARMM36 force field, downloaded from 
the MacKerell laboratory’s repository, was used 
for all simulations. The topology files encompass 

parameters for bonds, angles, torsions, and non-
bonded interactions. Bond potentials account for 
interactions between chemically bonded atoms, angle 
potentials describe interactions involving three atoms, 
and dihedral (torsion) potentials involve four atoms, 
collectively defining the conformational energy 
landscape.

Non-bonded interactions were modeled to include 
electrostatic and van der Waals forces. Van der 
Waals interactions were described via the Lennard-
Jones potential, while electrostatic interactions 
followed Coulomb’s law. For atom pairs with partial 
charges qi  and qj , separated by distance rij , the 
electrostatic interaction energy is given by:

Where: ε is the dielectric constant.

The van der Waals interactions are represented by:

Following topology generation, the simulation 
system was assembled by defining the simulation box 
with a minimum distance of 1 nm between the solute 
(protein-ligand complex) and the box boundary. Solvent 
molecules—typically TIP3P water—were added to 
solvated the system, ensuring a realistic environment 
and system stability (Figure 1). To neutralize the overall 
charge, counterions were incorporated: chloride ions 
(Cl−−) were added for positively charged molecules, 
and sodium ions (Na++) for negatively charged 
molecules, replacing some water molecules.

The next steps involved generating the 
input run parameters: a .tpr file was created via 
the grompp command, followed by the addition of 
ions through the genion utility to neutralize the system. 
Energy minimization was then performed using the 
steepest descent algorithm, executing 50,000 steps until 
reaching a convergence tolerance of 1,000 kJ/mol·nm.

Long-range electrostatic interactions were 
computed using the Particle Mesh Ewald (PME) 
method with a real-space cutoff of 1.2 nm and a Fourier 
grid spacing of 0.16 nm. Equilibration protocols 
included: (1) NVT ensemble at 310 K for 1 ns with 
a 0.1 ps time step, maintaining temperature via the 
velocity-rescaling thermostat; and (2) NPT ensemble 
at 1 bar with Parrinello-Rahman pressure coupling, 
a compressibility of 4.5×10-5 bar−1, and a coupling 
constant of 2 ps, also for 1 ns.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∑
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝜀𝜀𝐸𝐸𝑖𝑖𝑗𝑗

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∑
𝐴𝐴𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖

12 −  
𝐵𝐵𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖

6

(1)

(2)
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Subsequently, production MD simulations were 
conducted over 100 ns with an integration time step of 2 
fs, employing the LINCS algorithm (Hess et al., 1997) 
to constrain all bonds involving hydrogen atoms. The 
stability and conformational behavior of the protein-
ligand complexes were analyzed using GROMACS’s 
internal analysis tools. Trajectory data were visualized 
using Visual Molecular Dynamics (VMD) and Grace 
Software for comprehensive assessment.

Validation of docking results
The stability of the selected protein-ligand complexes 
was evaluated by calculating the RMSD of atomic 
positions over the course of MD simulations, providing 
insights into the binding stability and conformational 
integrity of the complexes.

RESULTS AND DISCUSSION
Transpeptidase enzyme sequence analysis
The amino acid sequence of the transpeptidase enzyme 
was obtained from the UniProt protein sequence 
database. Physicochemical properties were computed 
using ProtParam, revealing a molecular weight of 23.54 
kDa, an amino acid length of 206 residues, a theoretical 
isoelectric point (pI) of 6.24, an instability index of 
31.21, and an aliphatic index of 83.25. These parameters 
suggest that the enzyme is thermodynamically stable 
under physiological conditions. Additionally, the 
EMBOSS Antigenic program predicted eleven potential 
antigenic sites, which may be involved in protein-ligand 
interactions during molecular docking and molecular 

dynamics simulations.

Further functional insights were obtained using 
the VICMpred server, which predicted the enzyme’s 
involvement in cellular processes with a score of 
1.1164, molecular information at -1.5058, molecular 
metabolism at -0.965, and virulence factors at -0.686. 
This analysis indicates that the protein likely exhibits 
virulence-associated characteristics. VICMpred 
employs support vector machine (SVM) algorithms 
that analyze patterns based on amino acid and 
dipeptide composition, achieving an overall accuracy 
of approximately 75%.

A summary of the sequence-based properties of 
the transpeptidase enzyme is presented in Table 1. 
Additionally, Verify3D scores for the 3PSQ structure 
are depicted in Figure 2. Notably, fewer than 80% 
of the amino acids scored≥0.1 in the 3D/1D profile, 
indicating potential regions of structural inconsistency 
or areas warranting further validation.

Molecular docking
Docking calculations were conducted using AutoDock 
Vina to evaluate the interaction of 890 plant-derived 
compounds with the cysteine transpeptidase enzyme 
from Streptococcus pyogenes. Binding affinities were 
expressed in kcal/mol. The results are summarized 
in Table 2. The binding energies of the studied 
compounds ranged from -2.2 to -9.3 kcal/mol, with 
more negative values indicating stronger binding 
affinity between the enzyme (receptor) and the 
inhibitor (compound).

Figure 1. The steps of creating A: the simulation box and B: solvent coating of Gromax molecular simulation.

A B
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Figure 2. Verify3D scores for the 3PSQ structure.

Tools Description Obtained results 

ProtParam Calculation of various physicochemical 
properties 

Molecular weight (23.54 kDa), amino 
acid length (206), theoretical isoelectric 
point (pI) (6.24), instability index (31.21), 
aliphatic index (83.25) 

EMBOSS –antigenic Finding possible antigenic sites in the 
protein sequence 11 antigenic sites 

VICM pred 

Classification of bacterial proteins into 
cellular process, molecular information, 
molecular metabolism and pathogenic 
factors 

Cell process (1.1164), molecule 
information (-1.5058), molecule 
metabolism (-0.965), pathogenic factors 
(-0.686) 

Table 1. Predicted structural and functional properties of the transpeptidase enzyme.
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Table 2. Analysis of molecules binding of selected compounds.

Docking score (-) Chemical scheme Molecular formula Pubchem ID Plant Compound name 

9.3 

 

C26H22O10 5281879 Licorice 5'-methoxyhydnocarpin 

9 
 

C12H20O2 8294 Plantain Linalyl acetate  

8.4 

 

C15H10O6 5280863 Licorice Kaempferol 

8 

 

C42H62O16 14982 Licorice Glycyrrhizic acid 

7.9 

 

C20H17NO5 11066 Barberry Berlambine 

7.8 

 

C27H25NO18 129693153 Barberry Tannin 

7.7 

 

C15H12O5 932 Licorice Naringenin 

7.6 

 

C15H10O7 5280343 
Turmeric 
and  
plantain 

Quercetin 

7.4 
 

C9H6O3 5281426 Turmeric Umbelliferone 

7.4 

 

C20H18NO4+ 2353 Barberry Berberine 

7.4 
 

C9H6O4 5281416 Barberry Esculetin 

7.4 

 

C21H22O9 503737 Licorice Liquiritin 
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Comparative analysis of the interactions revealed 
that compounds from licorice, barberry, turmeric, 
plantain, nettle, cinnamon, aloe vera, and thyme 
exhibited the strongest interactions, with binding 
energies between -7 and -9.3 kcal/mol. Conversely, 
compounds from oregano, eucalyptus, sage, hyssop, 
and mangrove displayed comparatively weaker 
interactions, with binding energies ranging from -6 
to -7 kcal/mol. Among these, the mangrove-derived 

compounds showed the weakest interactions, with 
energies between -4 and -7.3 kcal/mol.

Notably, specific compounds demonstrated minimal 
binding affinity: acetaldehyde from cinnamon (-2.2 
kcal/mol), methyl myristate from plantain (-2.8 
kcal/mol), propanoate from thyme (-3.2 kcal/mol), 
isovaleric aldehyde from cinnamon (-3.6 kcal/mol), 
and n-caproaldehyde from mangrove (-3.7 kcal/mol). 
These exhibited the lowest binding affinities and, thus, 

Table 2 (Continued). Analysis of molecules binding of selected compounds.

Docking score (-) Chemical scheme Molecular formula Pubchem ID Plant Compound name 

7.3 

 

C16H20 92672 Plantain 1,3-diisopropylnaphthalene 

7.3 

 

C14H6O8 5281855 Turmeric Ellagic acid 

7.3 

 

C17H21NO2 64695 Nettle Apoatropine 

7.3 
 

C9H6O2 323 Cinnamon Coumarin 

7.3 

 

C15H10O5 3220 Aloe vera Emodin 

7.2 

 

C15H24 530816 Thyme Alpha-bourbonene 

7.2 

 

C20H26O4 442009 Turmeric Carnosol 

7.3 

 

C18H36N4O11 6032 - Kanamycin 

6.2 

 

C37H67NO13  12560 - Erythromycin 
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the least potential for effective inhibition of the S. 
pyogenes transpeptidase enzyme.

Analyzing the amino acids involved in hydrophobic 
and hydrogen bond formation using LigPlot+ software 
revealed key interactions. As depicted in Figure 3, 
quercetin formed hydrogen bonds with cysteine 
13 (Cys13A), aspartic acid 115 (Asp115A), and 
isoleucine 12 (Ile12A), indicated by green dashed lines. 
Hydrophobic interactions involved amino acids such 
as Gly10A, Trp117A, Trp41A, Cys8A, Leu9A, and 
Glu42A. A ball-and-stick model visually represented 
the ligand within the active site, illustrating these 
interactions.

Considering the resource-intensive nature of 
laboratory screening for herbal compounds, 
bioinformatics tools have emerged as impactful 
adjuncts, offering significant time and cost efficiencies. 
Recent studies highlight the antibacterial potential of 
secondary metabolites from medicinal plants against S. 
pyogenes. This study further evaluates the interaction 
and inhibitory potential of selected plant compounds 
against the S. pyogenes transpeptidase enzyme using 
molecular docking and molecular dynamics approaches. 
S. pyogenes is a prevalent human pathogen responsible 
for a spectrum of conditions, from mild infections like 
pharyngitis and impetigo to severe diseases such as 
necrotizing fasciitis, sepsis, and toxic shock syndrome 
(Piard et al., 1997).

The present findings indicate that most of the 
investigated compounds exhibit notable in silico 
inhibitory potential against the 3PSQ enzyme, with 
binding energies ranging from -2.2 to -9.3 kcal/mol. 
Nineteen compounds—namely methoxyhydnocarpine, 
linalyl acetate, kaempferol, glycyrrhizic acid, berlambin, 
tannin, naringenin, quercetin, amblyferon, berberine, 
askoltin, liquiritin, 1,3-dipropynylnaphthalene, ellagic 
acid, apotropin, coumarin, emodin, alpha-bourbonene, 
and carnosol—derived from licorice, plantain, 
barberry, turmeric, nettle, cinnamon, aloe vera, and 
thyme, demonstrated the strongest affinity for the 
transpeptidase enzyme. Kanamycin and erythromycin 
served as reference antibiotics; the former generally 
exhibited the lowest docking scores among the plant 
compounds, while erythromycin consistently showed 
the strongest binding across all tested compounds.

Aligning with findings by Barh et al. (2011), who 
identified ten leading non-herbal pharmaceutical 
inhibitors targeting apoptosis-related enzymes, 
these results suggest that the highlighted herbal 
compounds could serve as potential inhibitors of the S. 

pyogenes transpeptidase enzyme, warranting further 
exploration of their therapeutic potential.

Supporting this, Shakeran and Nosrati (2019) 
investigated plant compounds from Ferulago 
angulata, Laurus nobilis, and Scrophularia 
striata concerning antibiotic resistance proteins 
in Staphylococcus aureus. Their analysis revealed 
effective interactions, notably with VanX, with palmitic 
acid and bis (2-ethylhexyl) phthalate demonstrating 
the strongest affinities. Bis (2-ethylhexyl) phthalate, 
derived from S. striata, exhibited high interaction 
energies with PBP2 and β-lactamase, enzymes crucial 
for bacterial cell wall synthesis and antibiotic resistance, 
with laboratory studies validating their antibacterial 
activities. Palmitic acid showed the highest interaction 
energy with VanA, suggesting that these compounds 
could impede their target protein activities, positioning 
them as promising candidates for further experimental 
validation (Shakeran and Nosrati, 2019).

Additionally, research on the antiviral effects 
of Ruellia tuberosa and Ruellia patula identified key 
metabolites, including catechin, gallic acid, rutin, and 
chlorogenic acid, via LC–MS/MS and HPLC. The 
antiviral activity was assessed against HAdV-40, HSV-
2, and H1N1 viruses. Ruellia tuberosa demonstrated 
stronger antiviral effects against most viruses, with R. 
patula particularly effective against HSV-2. Molecular 
docking and dynamics studies confirmed stable 
interactions between these bioactive compounds and 
viral targets, underscoring their potential as alternative 
antiviral agents (Melk and Sayed, 2024).

Complementing this, Mangal et al. (2023) 
identified three promising inhibitors (CID: 
13888122, CID: 3694932, and CID: 102445430) 
targeting Sortase C, a key enzyme involved in S. 
pyogenes cell wall biosynthesis. Using an integrated 
computational pipeline—including protein modeling, 
virtual screening, and molecular dynamics—they 
demonstrated stable binding and favorable drug-like 
properties, suggesting potential for further preclinical 
development.

Similarly, Rehman et al. (2021) employed a 
subtractive proteomics approach to identify novel 
drug targets in S. pyogenes. Narrowing down to 
145 non-human homologs, they identified DnaA 
and a two-component response regulator as 
promising cytoplasmic targets. Screening over 1000 
phytochemicals via docking and simulation revealed 
a lead compound with potential antibacterial activity.

Finally, a study on Murraya koenigii (curry leaf) 
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Figure 3. Amino acids involved in hydrophobic and hydogenic bonds by Ligplot+ software.
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identified several bioactives, including O-methyl 
murrayamine, koenigine, koenigicine, and murrayone, 
with notable inhibitory effects against Streptococcus 
mutans, a pathogen responsible for dental caries. 
Notably, molecular docking revealed koenigicine as 
the strongest binder, indicating its potential application 
in oral health products such as antibacterial toothpaste 
(Maheswari and Sankar, 2024).

Prediction of physicochemical properties and 
toxicity potential of the studied compounds
The physicochemical and pharmacokinetic properties 
of the hit compounds, identified through docking 
studies, were evaluated using pkCSM. The parameters 
assessed include Lipinski’s rule of five, compound 
solubility, and additional pharmacokinetic factors 
(Table 3).

Molecular dynamics simulation results
Compounds with high docking scores were further 
evaluated through molecular dynamics (MD) 
simulations. To assess the stability of the system, 
fluctuations in physical quantities such as temperature, 
kinetic energy, potential energy, and total energy were 
examined over time. A stable system is characterized 
by fluctuations around a constant mean value.

System equilibrium was demonstrated by analyzing 
the trajectories of temperature and energy changes as 
functions of simulation time. As shown in Figure 4A, 
temperature fluctuations remained minimal throughout 
the simulation, indicating thermal stability. The potential 
energy of the system was obtained by averaging over 
time, considering all pairwise interactions between 
force centers; this parameter was calculated at each 
simulation step. As depicted in Figures 4B and 4C, 
both the average potential and total energies remained 
nearly constant during the NPT simulation intervals, 
further confirming the system’s equilibrium.

The final phase of the analysis involved trajectory 
examination to evaluate the overall flexibility and 
stability of the protein, focusing on parameters such 
as root mean square deviation (RMSD), radius of 
gyration, and energy. RMSD is a critical indicator 
of model stability, reflecting how much the atomic 
positions deviate from their initial reference over time. 
A higher RMSD denotes greater structural change, 
whereas a lower RMSD or a slope approaching zero 
suggests enhanced stability. Conversely, increasing 
or fluctuating RMSD indicates instability within the 
model (Carugo and Pongor, 2001). Figure 4D illustrates 
the RMSD trajectories, reflecting the model’s stability 
throughout the simulation.

Since direct measurement of individual atom 
distances from the protein’s center of mass is not 
feasible, the radius of gyration is employed as an 
alternative metric. This parameter assesses whether 
the protein maintains its folded state; smaller values 
indicate a more compact, folded structure, while larger 
values suggest unfolding or extension. As shown in 
Figure 4E, the radius of gyration remained relatively 
constant during the simulation, indicating that the 
protein retained its structural stability throughout the 
process.

Interaction energies
The total protein-ligand interaction energy was 
calculated as the sum of van der Waals and electrostatic 
energies, as detailed in Table 4. All selected compounds 
exhibited relatively low total interaction energies, 
indicating favorable interactions with the target protein. 
These findings support the potential of the investigated 
compounds as effective enzyme inhibitors.

Molecular dynamics (MD) simulation is a 
computational approach based on Newton’s equations of 
motion and principles of statistical mechanics. It enables 
the modeling of atomic and molecular movements 
and interactions, providing valuable insights into the 
dynamic behavior of biological systems. During MD 
simulations, atoms and molecules interact according 
to physical laws over specified timeframes, allowing 
the analysis of their trajectories and interactions. This 
method permits the in silico testing of materials without 
the need for laboratory synthesis (Nair and Miners, 
2014). By solving the equations of motion over time, 
MD explores the relationships between molecular 
structure, dynamics, and function, facilitating the 
prediction of macroscopic properties from microscopic 
data—properties that are often challenging to measure 
directly (Nair and Miners, 2014; Hospital et al., 2015).

MD simulations are particularly valuable for studying 
materials under extreme conditions and for predicting 
the behavior of macromolecules within various 
environments. Comparing simulation results with 
experimental data helps validate or challenge existing 
theoretical models (Nair and Miners, 2014). The 
simulation process typically involves three main steps: 
(a) Model Building—constructing a computational 
model of the system; (b) Trajectory Calculation—
determining the positions and velocities of molecules 
over time; and (c) Trajectory Analysis—examining the 
generated trajectories to understand molecular behavior. 
The trajectory calculation step is especially critical, as 
it involves using equations of motion to monitor atomic 
and molecular positions dynamically (Groenhof, 2013).



Hejazi et al.

20

Table 3. Pharm
acokinetic properties of the top candidates against transpeptidase enzym

e.

Standard param
eters 

5'-Methoxyhyd×carpin 

Linalyl acetate 

Kaempferol 

Glycyrrhizic acid 

Berlambine 

Tannin 

Naringenin 

Quercetin 

Umbelliferone 

Berberine 

Esculetin 

Liquiritin 

1,3-
diisopropylnaphthalene 

Ellagic acid 

Apoatropine 

Coumarin 

Emodin 

Alpha-bourbonene 

Carnosol 

Absorption 

W
ater solubility (log 

m
ol/L) 

-3.1 
-3.1 

-3.0 
-2.8 

-4.2 
-2.8 

-3.2 
-2.9 

-2.1 
-3.9 

-2.4 
-3.3 

-6.0 
-3.1 

-2.7 
-1.5 

-3.1 
-5.9 

-4.1 

C
aco2 perm

eability (log 
Papp in 10

-6 cm
/s) 

0.3 
1.6 

0.0 
-0.7 

1.0 
-2.3 

1.0 
-0.2 

1.2 
1.7 

0.3 
0.5 

1.4 
0.3 

1.6 
1.6 

0.0 
1.3 

0.5 

Intestinal absorption 
(hum

an) (%
 Absorbed) 

94.7 
95.2 

74.2 
0 

100 
0 

91.3 
77.2 

94.5 
97.1 

86.2 
46.0 

94.4 
86.6 

95.5 
97.3 

74.4 
95.7 

91.2 

Skin Perm
eability (log Kp) 

-2.7 
-1.9 

-2.7 
-2.7 

-2.6 
-2.7 

-2.7 
-2.7 

-2.6 
-2.5 

-2.7 
-2.7 

-2.4 
-2.7 

-2.9 
-1.9 

-2.7 
-2.0 

-2.8 
P-glycoprotein substrate 

✓
 

× 
✓

 
✓

 
× 

✓
 

✓
 

✓
 

× 
✓

 
✓

 
✓

 
✓

 
✓

 
× 

× 
✓

 
× 

✓
 

P-glycoprotein I inhibitor 
✓

 
× 

× 
× 

✓
 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
✓

 
P-glycoprotein II inhibitor 

✓
 

× 
× 

× 
✓

 
× 

× 
× 

× 
✓

 
× 

× 
× 

× 
× 

× 
× 

× 
× 

D
istribution 

VD
ss (hum

an) (log L/kg) 
-0.4 

0.0 
1.2 

-0.5 
-0.0 

0.6 
-0.0 

1.5 
0.0 

0.5 
0.5 

-0.1 
1.1 

0.3 
0.9 

-0.1 
0.4 

0.7 
0.8 

Fraction unbound 
(hum

an) (Fu) 
0.0 

0.4 
0.1 

0.4 
0.1 

0.3 
0.0 

0.2 
0.4 

0.2 
0.4 

0.1 
0 

0.0 
0.3 

0.3 
0.1 

0.1 
0.0 

BBB perm
eability (log BB) 

-1.4 
0.5 

-0.9 
-1.5 

-0.0 
-3.4 

-0.5 
-1.0 

-0.2 
0.1 

0.0 
-1.1 

0.6 
-1.2 

0.2 
-0.0 

-0.7 
0.8 

-0.0 
C

N
S perm

eability (log 
PS) 

-3.8 
-2.3 

-2.2 
-4.3 

-2.1 
-5.3 

-2.2 
-3.0 

-2.7 
-1.5 

-2.2 
-3.8 

-0.9 
-3.5 

-2.5 
-1.9 

-2.3 
-1.5 

-1.8 

M
etabolism

 

C
YP2D

6 substrate 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

C
YP3A4 substrate 

✓
 

× 
× 

× 
✓

 
× 

× 
× 

× 
✓

 
× 

× 
✓

 
× 

✓
 

× 
× 

✓
 

✓
 

C
YP1A2 inhibitior 

× 
× 

✓
 

× 
✓

 
× 

✓
 

✓
 

✓
 

✓
 

✓
 

× 
✓

 
✓

 
× 

✓
 

✓
 

✓
 

× 
C

YP2C
19 inhibitior 

× 
× 

× 
× 

✓
 

× 
× 

× 
× 

× 
× 

× 
✓

 
× 

× 
× 

× 
× 

✓
 

C
YP2C

9 inhibitior 
✓

 
× 

× 
× 

✓
 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

C
YP2D

6 inhibitior 
× 

× 
× 

× 
× 

× 
× 

× 
× 

✓
 

× 
× 

× 
× 

✓
 

× 
× 

× 
× 

C
YP3A4 inhibitior 

✓
 

× 
× 

× 
✓

 
× 

× 
× 

× 
✓

 
× 

× 
× 

× 
× 

× 
× 

× 
× 
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Standard param
eters 

5'-Methoxyhyd×carpin 

Linalyl acetate 

Kaempferol 

Glycyrrhizic acid 

Berlambine 

Tannin 

Naringenin 

Quercetin 

Umbelliferone 

Berberine 

Esculetin 

Liquiritin 

1,3-
diisopropylnaphthalene 

Ellagic acid 

Apoatropine 

Coumarin 

Emodin 

Alpha-bourbonene 

Carnosol 

Toxicity 

Total C
learance (log 

m
l/m

in/kg) 
0.2 

1.6 
0.4 

-0.3 0.1 
-0.2 

0.0 
0.4 

0.7 
1.2 

0.6 
0.3 

0.1 
0.5 

0.9 
0.9 

0.3 
0.9 

0.2 

M
ax. tolerated dose 

(hum
an) (log m

g/kg/day) 
0.5 

0.5 
0.5 

0.3 
-0.2 

0.4 
-0.1 

0.4 
0.6 

0.1 
-0.2 

0.1 
0.6 

0.4 
0.1 

0.4 
0.1 

-0.3 
0.2 

hER
G

 I inhibitor 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

hER
G

 II inhibitor 
✓

 
× 

× 
× 

× 
✓

 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

O
ral R

at Acute Toxicity 
(LD

50) (m
ol/kg) 

2.6 
1.7 

2.4 
2.4 

2.3 
2.4 

1.7 
2.4 

2.0 
2.5 

2.3 
2.5 

2.2 
2.3 

2.6 
2.1 

2.1 
1.5 

2.1 

O
ral R

at C
hronic Toxicity 

(LO
AEL) (log 

m
g/kg_bw

/day) 
2.1 

2.2 
2.5 

3.0 
2.2 

6.6 
1.9 

2.6 
1.7 

1.8 
1.5 

3.7 
1.3 

2.6 
1.5 

1.9 
2.0 

1.3 
1.9 

H
epatotoxicity 

× 
× 

× 
× 

✓
 

× 
× 

× 
✓

 
✓

 
× 

× 
✓

 
× 

✓
 

× 
× 

× 
× 

Skin Sensitisation 
× 

✓
 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

✓
 

× 
× 

× 
× 

× 
× 

T.P
yriform

is toxicity (log 
ug/L) 

0.2 
1.1 

0.3 
0.2 

0.4 
0.2 

0.3 
0.2 

0.5 
0.3 

0.3 
0.2 

1.1 
0.2 

1.3 
0.3 

0.5 
1.4 

0.4 

M
innow

 toxicity (log m
M

) 
1.9 

0.9 
2.8 

6.8 
0.1 

10.0 
2.1 

3.7 
1.7 

-0.2 
2.3 

4.0 
-1.4 

2.1 
2.4 

1.5 
2.0 

0.1 
-0.6 

Excretion 
R

enal O
C

T2 substrate 
× 

× 
× 

× 
✓

 
✓

 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

× 
× 

AM
ES toxicity 

× 
× 

× 
× 

× 
× 

× 
× 

× 
✓

 
× 

✓
 

× 
× 

× 
× 

× 
× 

× 

Table 3 (C
ontinued). Pharm

acokinetic properties of the top candidates against transpeptidase enzym
e.

Total interaction energy 
Electrostatic energy 

Van der w
aal energy 

Ligands 
-90.562 

-75.2073 
-15.3547 

Berberine 
-76.3041 

-47.9282 
-28.3759 

Q
uercetin 

-60.8422  
-55.5276 

-5.3146 
N

aringenin 
-57.7011 

-47.2335 
-10.4676 

O
xyberberine 

-38.908 
-32.5844 

-6.3236 
Berlam

bine 
-30.22252 

-7.97232 
-22.2502 

Aesculetin 
-23.6316 

-6.65654 
-16.9751 

Apoatropine 
-12.13565 

-1.95025 
-10.1854 

C
oum

arin 
- 4.55507   

-1.25229 
-3.30278 

Liquiritin 

Table 4. Van der W
aals energy, electrostatic and total energy of protein-ligand interaction.
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In this study, GROMACS—a widely used and 
efficient software for MD simulations—was employed 
to investigate molecular interactions at nanometer 
scales over picosecond to nanosecond timescales. 
The simulations confirmed that all evaluated protein-
ligand complexes were stable, with interaction energy 

values ranging from -4.55507 to -90.562 kcal/mol. 
Furthermore, MD simulations played a crucial role 
in identifying potential inhibitors of Streptococcus 
pyogenes Sortase C, a key bacterial enzyme absent in 
humans but essential for cell wall synthesis. Through a 
combination of protein sequence analysis, comparative 

  

 

 
 

 
 

Figure 4. Fluctuations in A: Potential, B: Temperature, C: Total Energy, D: RMSD and E: Radius of gyration of protein during 
the simulation.

A B

C D

E
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modeling, virtual screening, and molecular docking, 
three lead compounds (CID: 13888122, CID: 3694932, 
and CID: 102445430) were identified. MD simulations 
validated their stability and favorable binding free 
energies, reinforcing their potential as promising 
candidates for the development of inhibitors targeting 
Sortase C (Mangal et al., 2023).

CONCLUSION
The results demonstrated that plants such as licorice, 
barberry, turmeric, plantain, nettle, cinnamon, 
aloe vera, and thyme contained the highest number 
of compounds with binding interactions ranging 
from -7.0 to -9.3 kcal/mol. In contrast, oregano, 
eucalyptus, sage, hyssop, and mangrove exhibited 
weaker interactions, with values between -6.0 and 
-7.0 kcal/mol.

Among the 19 tested compounds—
methoxyhydenocarpine, linalyl acetate, kaempferol, 
glycyrrhizic acid, berlambin, tannin, naringenin, 
quercetin, amblyferon, berberine, askoltin, liquiritin, 
1,3-disopropylnaphthalene, ellagic acid, apotropin, 
coumarin, emodin, alpha-bourbonene, and carnosol—
those derived from licorice, plantain, barberry, turmeric, 
nettle, cinnamon, aloe vera, and thyme exhibited the 
strongest binding energies with the transpeptidase 
enzyme.

Molecular dynamics (MD) simulations confirmed 
that the investigated complexes maintained sufficient 
stability throughout the simulation period. Moreover, 
the promising compounds showed favorable total 
interaction energy values, ranging from -4.55507 
to -90.562 kcal/mol. These findings underscore the 
utility of the bioinformatics approach employed in 
this study, providing a solid foundation for subsequent 
experimental validation of the efficacy and safety 
of these compounds against bacterial targets. It is, 
however, essential to emphasize that experimental 
validation—either in vivo or in vitro—is critical for 
confirming these computational results and ensuring 
their practical applicability in future drug development 
efforts.
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