# Association mapping for resistance to powdery mildew in oriental tobacco (*Nicotiana tabaccum* L.) germplasm

Reza Darvishzadeh<sup>1,2\*</sup>, Ashkan Basirnia<sup>2</sup>, Hamid Hatami Maleki<sup>3</sup>, Morad Jafari<sup>1,2</sup>

<sup>1</sup>Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, P.O. Box 165, Km 12 Nazlou Road, Urmia, Iran. Tel: 04432752741, E-mail: r.darvishzadeh@urmia.ac.ir, ashkan.basirnia@yahoo.com, m.jafari@urmia.ac.ir.

<sup>2</sup>Institute of Biotechnology, Urmia University, Shahid Beheshti St., Urmia, Iran. Tel: 04433440199.

<sup>3</sup>Departrment of Agronomy and Plant Breeding, Faculty of Agriculture, University of Maragheh, Maragheh, Iran. Tel: 04137276008, E-mail: hatamimaleki@yahoo.com.

<sup>\*</sup>Corresponding author, E-mail: r.darvishzadeh@urmia.ac.ir, Tel: 04432752741.

# ABSTRACT

Powdery mildew caused by Erysiphe cichora*cearum* is an important fungal disease which threatens tobacco (Nicotiana tabacum L.) production. The objective of this study was to determine DNA markers linked to genomic regions associated with resistance to powdery mildew in tobacco through the association mapping approach. Seventy tobacco genotypes were fingerprinted using 26 simple sequence repeat (SSR) primer pairs which were distributed in several chromosomes of tobacco. A total number of 66 alleles were detected by 26 SSR primers with an average of 2.53 alleles per locus. Based on population structure analysis, the studied genotypes were classified into three groups including Chopogh, PD and Tikolak genotypes. Ou of 325 marker pairs, 6.15% showed a significant level of linkage disequilibrium (LD) (P<0.01). The mean of D' for all marker pairs was 0.268. Using susceptibility data of the 70 genotypes against fungal agent, three loci (pt30034, pt30008 and pt30159) from linkage groups 22, 11 and 14b of tobacco reference linkage map were identified to be associated with the gene(s) controlling resistance to powdery mildew. The identified markers could be good candidates for marker assisted selection in powdery mildew disease resistance breeding programs. However, like any other quantitative trait, there is a requirement to assess the quality of the obtained quantitative trait loci (QTLs) before marker assisted selection (MAS) become a viable proposition.

*Keywords*: Linkage disequilibrium, mixed linear model, *Nicotiana tabacum*, powdery mildew, simple sequence repeat.

# **INTRODUCTION**

Tobacco, genus Nicotiana spp. from family Solanaceae, is one of the most important industrial crops and Nicotiana tabacum L. is the most cultivated species in the world (Ren and Timko, 2001). Many challenges affect cultivation of tobacco in different areas. Among them, powdery mildew caused by Erysiphe cichoracearum DC (Smeeton and Ternouth, 1992) is an important sporadic disease in tobacco-producing countries (Shew and Lucas, 1991). When the disease is severe, powdery mildew can completely cover the leaf surface and render the leaf unusable. The major symptoms of powdery mildew are abundant tiny whitish mycelia produced by the causal fungus in the outer surface of the leaves (Shoemaker and Shew, 1999). In severe contaminations, losses in yield and quality of tobacco could be around 30% to 80% (Darvishzadeh *et al.*, 2010). However, fungicides can provide effective control of this disease, but must be care to avoid excessive residues on the harvested leaf. According to previous studies, there is high genetic variability for resistance to powdery mildew in tobacco (Smeeton and Ternouth, 1992; Darvishzadeh *et al.*, 2010).

Recently, molecular tools especially molecular markers have revolutionized plant breeding activities. Evaluation of genomic diversity through DNA markers and identifying tightly linked markers to gene/ locus of interest offer an opportunity for breeders to apply marker assisted selection (MAS) in their breeding programs. There are some reports in tobacco that used bi-parental breeding populations such as backcrosses, F2 intercrosses, or recombinant inbred lines (RILs) for mapping markers linked to loci controlling disease resistance (Tong et al., 2012; Vontimitta and Lewis, 2012). Vontimitta and Lewis (2012) by using an SSR map developed on doubled haploid population coming from a cross 'Beinhart-1000 × Hicks' detected two major QTLs for resistance to Phytophthora nicotianae that explained 25.4 and 20.4% of phenotypic variation. Tong et al. (2012) by using an extensive SSR map constructed on F<sub>2</sub> population coming from a cross between two fluecured tobacco cultivars ('Changbohuang' (CBH) and 'Jinyehuang' (JYH)) detected 3 QTLs for brown spot resistance in tobacco which explained 86% of phenotypic variation.

However, due to few recombination events happening in the bi-parental populations, the associated markers are not often tightly linked to the loci of interest (Myles et al., 2009). Hence, association mapping approach, also known as linkage disequilibrium (LD) mapping, which use ancestral recombination events in germplasm collections or natural populations to make marker-phenotype associations (Abdurakhmonov and Abdulkarimov, 2008; Parisseaux and Bernardo, 2004) has been introduced. This method attains a higher resolution because of the use of all meiosis accumulated in the breeding history and linkage disequilibrium (LD). Identification of markers associated with important traits via association mapping has been reported in several plants species including maize (Thornsberry et al., 2001), barley (Ivandic et al.,

2003; Kraakman *et al.*, 2004; Kraakman *et al.*, 2006), hexaploid wheat (Breseghello and Sorrels, 2006), chickpea (Saeed *et al.*, 2013) and long lifespan forest plants (Wilcox *et al.*, 2007). However, there is narrow information about utilization of association mapping in tobacco. Lately, Fricano *et al.* (2012) applying SSR markers could classify tobacco accessions to six main clades which correspond to "Oriental", "Flue-Cured", "Burley", "Dark", "Primitive", and "Other" classes. Regarding to Fricano *et al.* (2012), pattern of LD was clearly dependent on the population structure and therefore, tobacco population structure must be considered in association analysis.

The aims of the present study were to characterize population structure in the studied oriental and semi oriental-type tobacco germplasm using SSR markers and identify SSR markers associated with responsible genes of powdery mildew resistance by general and mixed linear models (GLM and MLM) procedures.

# MATERIALS AND METHODS

#### Plant material and phenotypic data

A population of 100 oriental and semi-oriental tobacco genotypes was evaluated for their reaction to Ervsiphe cichoracearum DC that causes tobacco powdery mildew by natural infection at Urmia Tobacco Research Centre. Tobacco genotypes were planted in a simple square lattice design with two replications. Each plot consisted of three rows of 5 m length, with a spacing of  $65 \times 20$  cm. To guarantee homogeneous inoculation, susceptible line (Basma S. 31) was planted throughout the experiment. The fungus diagnosis was made by direct observation of white mycelium over the leaf surface. The disease severity was determined following the scale presented by Fisher (1992) in CORESTA information bulletin, which measured the percentage of tissue affected by powdery mildew in tobacco leaves (1= few spots, 2= 1-5%, 3=5-25%, 4=25-50%, 5>50% leaf area covered).

# Genotypic data

Genomic DNA was extracted from the leaves of the 70 genotypes out of 100 (Table 1) following the method described by Doyle and Doyle (1987). Concentrations of the DNA samples were deter-

mined by spectrophotometer (BioPhotometer 6131; Eppendorf, Hamburg, Germany) at 260 nm. The quality of the DNA was checked by running 1 µg DNA on 0.8% (w/v) agarose gel in 0.5X TBE buffer (45mM Tris base, 45 mM boric acid, 1mM EDTA pH 8.0). Twenty-six SSR primer pairs out of 278 from (Table 2) the tobacco SSR database (Blinder et al., 2007 and 2011) were used for DNA fingerprinting. The choice of SSR markers was based on their known genetic locations to obtain near-uniform coverage of the tobacco genome and clarity of produced bands (Bindler et al., 2007 and 2011). Polymerase chain reaction was carried out using the method described by Darvishzadeh et al. (2013). Briefly, The reaction mixture contained 2.5mM of each primer (Table 2), 0.4 Unit of Taq DNA polymerase (Cinna Gen Inc., Tehran, Iran), 100uM of each (BioFluxbiotech, dNTP http://biofluxbiotech.com), 2µl 10X PCR buffer, 2mM MgCl<sub>2</sub> (CinnaGen, Tehran, Iran), ddH<sub>2</sub>O and 25ng template DNA in a 20µl volume. Amplification was carried using a 96-well Eppendorf Mastercycler Gradient (Type 5331, Eppendorf AG, Hamburg, Germany) for 35 cycles consisting of a denaturation step at 94 °C for 1 min, annealing at 55 °C for 1 min and an extension step at 72 °C for 1.5 min. An initial denaturation step at 94 °C for 4 min and a final extension step of 10 min at 72 °C were also included. The reaction products were mixed with an equal volume of formamide dyes (98% formamide, 10Mm EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol) and resolved on a 3% (w/v) agarose gel in 0.5X TBE buffer. The gels were stained with 1.0  $\mu$ g ml<sup>-1</sup> ethidium bromide then were photographed under UV light using a Gel-Doc image analysis system (Gel Logic 212 PRO, USA).

#### Data analysis

The SSR data were scored as co-dominant markers in order to distinguish homozygotes and heterozygotes genotypes for each locus. The levels of gene diversity were calculated using Power Marker 3.25 software (http://powermarker.net). Population structure was analyzed using a model-based Bayesian approach in the software Structure 2.3.4 (Pritchard *et al.*, 2000). Five independent runs were performed, setting the number of sub populations (K) from 1 to 10, burn in time and

MCMC (Markov Chain Monte Carlo) replication number both to 100,000, and a model for admixture and correlated allele frequencies. The K value was determined by the log likelihood for each K; Ln P(D) = L(K) (Rosenberg *et al.*, 2002). Since the distribution of Ln P(D) did not show a clear number of true K, delta K ( $\Delta K$ ) based on the second order rate of change in the likelihood (Evanno et al., 2005) was used alternatively to identify a clear peak to represent the true K value. Inferred ancestry estimates of individuals (Qmatrix) were derived for the selected subpopulation (Pritchard et al., 2000). Association mapping was performed to analyze marker-trait association by structured association approach using ancestry coefficient (Q values) estimates as covariate in a general linear model (GLM) by using TASSEL 2.1 software. Multiple testing corrections were performed by adjusting maker probability values for multiple test runs, by a permutation test in the TASSEL 2.1 software. The association analysis was also performed using mixed linear model (MLM) approach in TASSEL 2.1 accounting for population structure and kinship relatedness (Q+K model). We used TASSEL 2.1 to estimate kinship coefficients based on SSR markers. Linkage disequilibrium analyses (LD) were conducted in TAS-SEL 2.1.

# **RESULTS AND DISCUSSION**

# Genotypic variation, population structure and linkage disequilibrium

Genotypes used in this study differed considerably for powdery mildew resistance (Table 1). Among 70 tobacco genotypes used in the experiment, 15 genotypes were rated moderately or partially resistant to powdery mildew. The most resistant genotypes were from RILs population.

However some lines selected from our Chopogh and water pipe tobacco landraces showed high resistant reaction to disease that reveal the great importance of local landraces in tobacco breeding programs. Detailed information about the levels of phenotypic variation and resistance to Darvishzadeh et al.,



**Figure 1.** Bilateral charts to determine the optimal number of K (K=3) identified by Structure program.



**Figure 2.** Genetic relatedness of the 70 genotypes of oriental and semi oriental tobacco with the 26 simple sequence repeats (SSRs) as analyzed by the Structure program. Numbers on the y-axis indicate the membership coefficient. The color of the bar indicates the three groups identified through the Structure program. Red: PD (RIL) lines; Green: Tikolak lines; Blue: SPT (Chopogh) lines. Accessions with the same colour belong to the same subgroup.

| <u> </u> |                            | <b>.</b>           |                                                              |
|----------|----------------------------|--------------------|--------------------------------------------------------------|
| Code     | Genotype name              | Origin             | Disease severity score<br>(Darvishzadeh <i>et al.,</i> 2010) |
| G01      | Kharmanli 163              | Turkey             | 5                                                            |
| G02      | Nevrokop                   | Bulgaria           | 5                                                            |
| G03      | Trabozan                   | Turkey             | 4.5                                                          |
| G04      | Krumovgraid                | Bulgaria           | 4.5                                                          |
| G05      | Basma Seres 31             | Greece             | 4.5                                                          |
| G06      | Triumph                    | Yugoslavia         | 5                                                            |
| G07      | Xanthi                     | Greece             | 5                                                            |
| G08      | Matianus                   | Iran               | 1.5                                                          |
| G09      | Immni 3000                 | CORESTA collection | 5                                                            |
| G10      | Melkin 261                 | CORESTA collection | 4                                                            |
| G11      | Tyk-Kula                   | CORESTA collection | 5                                                            |
| G12      | ss-289-2                   | CORESTA collection | 5                                                            |
| G13      | Ohdaruma                   | CORESTA collection | 2                                                            |
| G14      | Ploudive 58                | Bulgaria           | 5                                                            |
| G15      | Line 20                    | CORESTA collection | 5                                                            |
| G16      | T-B-22                     | CORESTA collection | 5                                                            |
| G17      | Ts 8                       | CORESTA collection | 5                                                            |
| G19      | F.K.40-1                   | Iran               | 3                                                            |
| G20      | Pz17                       | CORESTA collection | 5                                                            |
| G22      | K.B                        | CORESTA collection | 5                                                            |
| G23      | G.D.165                    | Bulgaria           | 5                                                            |
| G24      | H.T.1                      | CORESTA collection | 5                                                            |
| G25      | Kramograd N.H.H. 659       | Bulgaria           | 5                                                            |
| G26      | T.K.23                     | CORESTA collection | 5                                                            |
| G27      | Alborz23                   | Iran               | 5                                                            |
| G29      | <sup>1</sup> Mutant 3      | Iran               | 1.5                                                          |
| G30      | <sup>1</sup> Mutant 4      | Iran               | 5                                                            |
| G31      | Pobeda 1                   | Russian            | 1                                                            |
| G32      | Pobeda 2                   | Russian            | 5                                                            |
| G35      | Samsun 959                 | Turkey             | 5                                                            |
| G36      | Samsun dere                | Turkey             | 5                                                            |
| G41      | <sup>2</sup> C.H.T.209.12e | Iran               | 5                                                            |
| G42      | C.H.T.209.12exF.K.40-1     | Iran               | 5                                                            |
| G43      | C.H.T.266-6                | Iran               | 5                                                            |
| G44      | СНТ 283-8                  | Iran               | 4 5                                                          |
| G45      | СНТ 273-38                 | Iran               | 5                                                            |
| C46      | Basma 12-2                 | Iran               | 5                                                            |
| C47      | Basma 16 10                | Iran               | 3                                                            |
| G47      | Dasilia 10-10              | lian               | 1                                                            |
| G48      | Dasilia 104-1              | lian               |                                                              |
| G49      | Basma 181-8                | iran               | 5                                                            |
| G51      | Izmir                      | Turkey             | 5                                                            |

Table 1. List of selected oriental-type tobacco genotypes and their origin.

## Darvishzadeh et al.,

| Code | Genotype name          | Origin   | Disease severity score<br>(Darvishzadeh <i>et al.,</i> 2010) |  |  |
|------|------------------------|----------|--------------------------------------------------------------|--|--|
| G52  | <sup>3</sup> P.D.324   | Iran     | 1                                                            |  |  |
| G53  | P.D.325                | Iran     | 2.5                                                          |  |  |
| G55  | P.D.328                | Iran     | 1                                                            |  |  |
| G56  | P.D.329                | Iran     | 1                                                            |  |  |
| G57  | P.D.336                | Iran     | 1                                                            |  |  |
| G58  | P.D.345                | Iran     | 1                                                            |  |  |
| G59  | P.D.364                | Iran     | 1                                                            |  |  |
| G61  | P.D.371                | Iran     | 1                                                            |  |  |
| G62  | P.D.381                | Iran     | 1                                                            |  |  |
| G63  | <sup>4</sup> SPT 403   | Iran     | 4                                                            |  |  |
| G64  | SPT 405                | Iran     | 5                                                            |  |  |
| G65  | SPT 406                | Iran     | 5                                                            |  |  |
| G66  | SPT 408                | Iran     | 5                                                            |  |  |
| G67  | SPT 409                | Iran     | 4                                                            |  |  |
| G68  | SPT 410                | Iran     | 5                                                            |  |  |
| G69  | SPT 412                | Iran     | 5                                                            |  |  |
| G71  | SPT 420                | Iran     | 5                                                            |  |  |
| G72  | SPT 430                | Iran     | 5                                                            |  |  |
| G73  | SPT 432                | Iran     | 5                                                            |  |  |
| G74  | SPT 433                | Iran     | 5                                                            |  |  |
| G75  | SPT 434                | Iran     | 5                                                            |  |  |
| G76  | SPT 436                | Iran     | 5                                                            |  |  |
| G77  | SPT 439                | Iran     | 5                                                            |  |  |
| G78  | SPT 441                | Iran     | 5                                                            |  |  |
| G80  | SPT 413                | Iran     | 1                                                            |  |  |
| G82  | <sup>5</sup> Jahrom 14 | Iran     | 5                                                            |  |  |
| G84  | L 16                   | Bulgaria | 5                                                            |  |  |
| G91  | L 17                   | Bulgaria | 1.5                                                          |  |  |
| G92  | C.H.T.269-12e          | Iran     | 5                                                            |  |  |

<sup>1</sup>Early-maturing mutants developed in Urmia Tobacco research center. <sup>2</sup>The"C.H.T." lines known as Tikolak are semi oriental tobacco developed in Tirtash Tobacco Research Centre (Iran). <sup>3</sup>The "PD" lines are recombinant inbred lines (RILs) derived from the cross between Basma Seres 31 and Dubec 566 in Urmia Tobacco Research Centre. <sup>4</sup>The "SPT" lines known as "Chopogh" tobacco are inbred lines selected from local landraces by single-plant or pure-line selection method in Urmia Tobacco Research Centre. <sup>5</sup>The "Jahrom" line is Iranian water pipe's tobacco line selected from local landraces by single-plant or pure-line selection method in Urmia Tobacco Research Centre. CORESTA: Cooperation Center for Scientific Research Relative to Tobacco, Paris, France (http://www.coresta.org/).

| Primer Forward sequence $5' \rightarrow 3'$ | Reverse sequence 5´→3´     | Linkage group | Band      | Number of | Position |
|---------------------------------------------|----------------------------|---------------|-----------|-----------|----------|
|                                             |                            | (LG)          | size (bp) | alleles   | (cM)     |
| PT30021 CATTTGAACATGGTTGGCTG                | CTCAACTCTCGTCGCTCTTG       | 4             | 224       | 3         | 22.7     |
| PT30132 CCTAACAGCATTTGCTACCCA               | GATGGACAAGAGTGGCCTTT       | 10            | 216       | 2         | 65.7     |
| PT30202 TCGAAACCTCGAGGACAGTT                | TATCCAAATCTCCAAAGCCC       | 7             | 225       | 2         | 0.0      |
| PT30159 GCATGCATATGAACATGGGA                | TTTGACATCTCTACTCTTCCGTTT   | 14b           | 197       | 2         | 8.1      |
| PT30027 CCGAGAGTTGCATTTGAATTT               | AGGGTTCTACGCAAGAGATTG      | 13            | 168       | 3         | 98.6     |
| PT30285 CATCATGGCAAGTCACCATC                | TGCTGGAAATTAGCGAGGTT       | 18            | 177       | 3         | 55.3     |
| PT30324 TGCTCTGCGTTAGAACAGGA                | CGACGAGAGAAGATTAGTGAAAGA   | 12            | 151       | 2         | 133.5    |
| PT20343 GGAACACCACCACCATAA                  | GGAGCTCAGGTTCCAATG         | 4             | 322       | 3         | 0.0      |
| PT30075 CGATCGGGTCGTTACACAAT                | CCCATCAGGTTGTTGGGTTA       | 11            | 195       | 3         | 12.9     |
| PT30241 AAGTCTCGTGTGGTTGCTTT                | AAAGGGCAATGTGTCTAGCTC      | 15            | 199       | 2         | 0        |
| PT30061 TCGTCCATTTCTTTCTCTCTCA              | CATAAATAGTTGCTCATTCAATCG   | 11            | 182       | 3         | 21.0     |
| PT30110 TTGTACGTTCCTCGCTGATG                | GGCCGACAATAAAGTGGCT        | 21            | 213       | 2         | 0.0      |
| PT30034 TCCTCCAACCAAACTCAAGC                | TTTCTGTTCGCGTTTCAAAT       | 22            | 228       | 3         | 0.1      |
| PT30250 GAACACACGTTCGTCATTGG                | ATAAGTCCCTTTAATTTAATTGCG   | 10            | 177       | 2         | 90.7     |
| PT30292 AAGACAGATTGGTGCGGAAC                | AGCACTTGGACAGGCGAATA       | 7             | 156       | 2         | 50.4     |
| PT30139 ACAACAACTACGTTAGTGTGAGAA            | TCATGTGTGCCAAGCTCTT        | -             | 186       | 3         | -        |
| PT30260 GGTAGGGTGGAACAAATTTATCA             | AATATGGTCTATGCCCGCAA       | 8a            | 225       | 2         | 0.8      |
| PT30067 AAGCCTGGTCAGTTATCCCA                | ATTCGCACCACTTAATCCCA       | 2             | 204       | 3         | 29.2     |
| PT30126 GTGATTCCAGCGGAAGACAT                | TTCGAAATAAGTACCTAGAGTCGG   | 10            | 208       | 3         | 0.0      |
| PT30008 CGTTGCTTAGTCTCGCACTG                | GGTTGATCCGACACTATTACGA     | 11            | 192       | 3         | 39.9     |
| PT30165 ACCTCTGTGGCCGTAAGCTA                | CCTCTACTTCAACAGGGTAAGAAA   | 19            | 224       | 2         | 0.0      |
| PT30014 TGCCGTGTAAATTTCATTTGG               | AGGATTCCTAACGTGTATTATGTTCT | 11            | 205       | 3         | 76.7     |
| PT30046 GATAGGTAGATTATCCTCTGCAACA           | GGTGCTAGCAACATCATCAA       | 13            | 214       | 3         | 29.9     |
| PT30172 AAACAACGTCGAAGCATTTG                | ACGCATGAAATTGTAAGGGC       | 4             | 216       | 3         | 36       |
| PT30205 GGTCGATCCACAATTTAAACG               | GCACTTGCTCCTTTGTACCC       | 3b            | 193       | 2         | 40.5     |
| PT30094 GGGTCATGCGTTCGAATTAT                | AACAAGAACGACGGTTACGC       | 18            | 214       | 2         | 0.0      |

| Table 2. Primer see | quences, linkage group | s and position of the | SSR loci applied to | 70 tobacco genotypes |
|---------------------|------------------------|-----------------------|---------------------|----------------------|
|---------------------|------------------------|-----------------------|---------------------|----------------------|

Genetic distance from the upper telomere estimated according to framework genetic linkage map of tobacco (Bindler et al., 2007)

**Table 3.** Table represents three loci associated with responsible gene(s) of resistance to powdery mildew using GLM and MLM procedures as well as the primer sequences, linkage group and genetic location of each locus (Blinder *et al.,* 2007)

| Locus   | Linkage | Sequence                          | Genetic  | GLM     |           |          | MLM     |
|---------|---------|-----------------------------------|----------|---------|-----------|----------|---------|
|         | group   |                                   | location | Marker  | Adjusting | Marker   | Marker  |
|         |         |                                   | (CM)     | P-value | marker P- | R-square | P-value |
|         |         |                                   |          |         | value     |          |         |
| Pt30034 | 22      | Forward: GACGAAACTGAGGATATTCCAAA  | 0.1      | 0.0100  | 0.0190    | 0.1046   | 0.0102  |
|         |         | Reverse: TGGAAACAAAGCCATTACCC     |          |         |           |          |         |
| Pt30008 | 3 11    | Forward: CGTTGCTTAGTCTCGCACTG     | 39.9     | 0.0286  | 0.0819    | 0.1160   | 0.0311  |
|         |         | Reverse: GGTTGATCCGACACTATTACGA   |          |         |           |          |         |
| Pt30159 | ) 14b   | Forward: GCATGCATATGAACATGGGA     | 8.1      | 0.0014  | 0.0020    | 0.1189   | 0.0037  |
|         |         | Reverse: TTTGACATCTCTACTCTTCCGTTT |          |         |           |          |         |

cM: centimorgan, GLM: general linear model, MLM: mixed linear model.



**Figure 3.** LD plot of the 26 pairs of SSR markers. The upper diagonal shows the linkage disequilibrium rates (D') among each pairs of SSR loci. The lower diagonal shows the levels of significance between each pairs of SSR loci. 6.15% of the 325 pair SSR loci showed significant levels of linkage disequilibrium ( $P \le 0.01$ ).

disease is available from Darvishzadeh *et al.* (2010).

In this study, the 26 microsatellite loci (SSRs) were used to assess genetic diversity among the 70 oriental and semi oriental-type tobacco genotypes. A total number of 66 alleles were detected by the 26 SSR primer pairs with an average of 2.53 alleles per locus. Gene diversity ranged from 0.33 to 0.66 that shows the probability of variation of two alleles between two individuals.

Regarding the SSR data in the present research, there was an acceptable genetic variation among the studied tobacco genotypes which is accommodated with previous reports in tobacco (Devalavia *et al.*, 2010; Darvishzadeh *et al.*, 2013). According to the literature, successful association mapping in a given species requires creation of an appropriate germplasm collection with phenotypic and underlying genetic variation for the traits of interest, while the rate of LD decay and

genetic relatedness determine the mapping resolution in the association mapping population (Zhu *et al.*, 2008; Sharbel *et al.*, 2000).

To dedicate the genetic structure of the association panel, a model-based Bayesian approach in the Structure software was used to subdivide inbred lines into the corresponding subgroup. Based on the  $\Delta K$  values, the studied genotypes were subdivided into three subgroups (Figure 1). These subgroups matched with three groups in our association panel including: Chopogh, PDs and Tikolak (Figure 2). The 81% of PDs, 71% of SPTs and 70% of Tikolaks were assigned to the corresponding subgroups, and the remaining ones were categorized into the "mixed" subgroups based on their Q values. Incorporating population structure (Q) in association analyses could minimize the false-positive trait-markers association (Yu and Buckler 2006: Yu *et al.*, 2006)

As mentioned above, presence of LD is a prerequisite for association mapping (Sorkheh *et al.*, 2008). Linkage disequilibrium (LD) is defined as a non-random association of alleles at separate loci located on the same chromosome (Mackay and Powell, 2007). LD has been used in association mapping (Zhu et al., 2008) and to locate quantitative trait loci (QTL) or major genes, based on the co-segregation of specific marker alleles and traits (Rafalski and Morgante, 2004). Several statistics have been developed for the quantification of LD. Choosing the appropriate LD measures depends on the objective of the study, and one performs better than other in particular situations and cases (Abdurakhmonov and Abdukarimov 2008). D' is one of the most commonly used measures of LD. The D' value ranged from 0.01 to 0.82 with the average value of 0.268 (Figure 3). In the collection under investigation, 6.15% of the 325 SSR primer pairs showed a significant level of linkage disequilibrium (LD) (P<0.01) (Figure 3). As expected, the LD in this germplasm encouraged us to do association analysis on this association panel.

#### Marker-trait association

In the present study, association mapping approach showed that three loci (pt30034, pt30008 and pt30159) from linkage groups 22, 11 and 14b of tobacco reference map (Blinder et al., 2007) significant associations (P≤0.0100, showed  $P \le 0.0286$  and  $P \le 0.0014$ ) with the gene(s) controlling resistance to powdery mildew in oriental and semi oriental-type tobacco genome (Table 3). Adjusting maker probabilities in multiple testing corrections shows a non-significant association (P≤0.0819) between locus pt30008 with the trait of interest in the GLM procedure (Table 3). As well as to reduce false positives for the detection of association between the marker and the trait, MLM (Mixed Linear Model) procedure based on population structure and their relative kinship using (Q + K) model was applied in Tassel 2.1 software. Similar results were seen using MLM procedure and the three loci showed significant associations (P≤0.0102, P≤0.0311 and P≤0.0037) with the gene(s) controlling the trait of interest (Table 3).

Nowadays, it is possible to localize loci or markers related to resistance to disease in tobacco. Mapping a nucleotide sequence underlying a specific trait offers an opportunity for tobacco breeders to apply marker assisted selection (MAS) in breeding programs. Several studies have been carried out to identify QTLs controlling disease resistance genes such as bacterial wilt (Nishi et al., 2003), Phytophthora nicotianae (Vontimitta and Lewis, 2010) and brown spot (Tong et al., 2012) in tobacco. However, there are few study via bi-parental and or association mapping for identifying powdery mildew resistance genes in tobacco. Recently, Li et al. (2011) using 127  $F_2$  and  $F_{2,3}$  populations from the cross between 'Taiyan 7' and 'Burley 21' identified one QTL with R<sup>2</sup> value of %11.63 on the constructed genetic linkage map covering 3483 cM of tobacco genome. However, there are many reports about application of association mapping in other plants belong to family Solanaceae such as potato (D'hoop et al., 2008) and tomato (Ranc et al., 2012).

In this study, a low range of LD was observed between markers. Low LD indicates that marker density in the study is not enough for detecting QTLs in the genome. However, similar to findings of Shehzad et al. (2009) some markers still captured the signal of QTL even in such a density. Our study demonstrated a significant potential of LD-based association mapping for the identification of powdery mildew resistance genes in tobacco which is in parallel with the findings of Fricano et al. (2012). However, like any other quantitative trait, there is a requirement to assess the quality of the obtained QTLs before MAS becomes a viable proposition. To obtain unbiased estimates of OTL effects and to determine the magnitude of bias of the predictive power, different approaches have been suggested. Crossvalidation has been shown to perform well for linkage mapping (Utz et al., 2000) but also for association mapping (Liu et al., 2013; Würschum and Kraft, 2014).

# **REFERENCES**

- Abdurakhmonov I. Y., and Abdukarimov A. (2008). Application of association mapping to understanding the genetic diversity of plant germplasm resources. *International Journal of Plant Genomics*, 2008: 574927.
- Bindler G., Vander Hoeven R., Gunduz I., Plieske J., Ganal M., Rossi L., Gadani F., and Donini P. (2007). A microsatellite marker based linkage map

of tobacco. *Theoretical and Applied Genetics*, 114: 341–349.

- Bindler G., Plieske J., Bakaher N., Gunduz I., Ivanov N., Van der Hoeven R., Ganal M., and Donini P. (2011). A high density genetic map of tobacco (*Nicotiana tabacum* L.) obtained from large scale microsatellite marker development. *Theoretical and Applied Genetics*, 123: 219–230.
- Breseghello F., and Sorrells M. (2006). Association mapping of kernel size and milling quality in wheat (*Triticum aestivum* L.) cultivars. Genetics, 172: 1165-1177.
- Darvishzadeh R, Alavi R., and Sarrafi A. (2010). Resistance to powdery mildew (*Erysiphe cichoracearum* DC.) in oriental and semi-oriental tobacco germplasm under field conditions, *Journal of Crop Improvement*, 24: 122 - 130.
- Darvishzadeh R., Mirzaei L., Hatami Maleki H., Laurentin H., Alavi S. R. (2013). Genetic variation in oriental tobacco (*Nicotiana tabacum* L.) by agro-morphological traits and simple sequence repeat markers. *Revista Ciência Agronomica*, 44: 347-355.
- Davalieva K., Maleva I., Filiposki K., Spiroski O., and Georgi D. (2010). Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis. *Diversity*, 2: 439-449.
- D'Hoop B. B., Paulo M. J., Mank R. A., Van Eck H. J., and Van Eeuwijk F. A. (2008). Association mapping of quality traits in potato (*Solanum tuberosum* L.). Euphytica, 161: 47–60.
- Doyle J. J., and Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin*, 19: 11-15.
- Evanno G., Regnaut S., and Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology*, 14: 2611-2620.
- Fricano A., Bakaher N., Del Corvo M., Piffanelli P., Donini P., Stella A., Nikolai V., Ivanov N. V., and Pozz C. (2012). Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (*Nicotiana tabacum* L.) germplasm. *BMC Genetics*, 13: 18.
- Ivandic V, Thomas W. T. B., Nevo E., Zhang Z., and Forster B. P. (2003). Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in *Hordeum spontaneum*. *Plant Breeding*, 122: 300-304.
- Kraakman A. T. W., Niks R. E., Van der Berg P. M. M. M., Stam P., and Van Eeuwijk F. A. (2004). Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. *Genetics*, 168: 435-46.
- Li H. L., Chen M. X., Zhou D. X., Chen S. H., Tao A. F., Li Y. K., Ma H. B., Qi J.

M., and Guo Y. C. QTL Analysis of Six Important Traits in Tobacco (*Nicotiana tabacum* L.). *Acta Agronomica Sinica*, 37: 2011: 1577-1584.

- Liu W., Gowda M., Steinhoff J., Maurer H. P., Würschum T., and Longin C.F., Cossic F., and Christoph J. (2011). Association mapping in an elite maize breeding population. Theoretical *and Applied Genetics*, 123: 847–858.
- Mackay L., and Powell W. (2007). Methods for linkage disequilibrium mapping in crops. *Trends in Plant Science*, 12: 57-63.
  - Myles S., Peiffer J., Brown P. J., Ersoz E. S., Zhang Z., Costich D. E., and Buckler E. S. (2009). Association mapping: Critical considerations shift from genotyping to experimental design. *The Plant Cell*, 21: 2194-2202.
  - Nishi T., Tajima T., Noguchi S., Ajisaka H., and Negishi H. Identification of DNA markers of tobacco linked to bacterial wilt resistance. *Theoretical and Applied Genetics*, 2003: 106: 765-770.
  - Parrisseaux B., and Bernardo R. (2004). In silico mapping of quantitative trait loci in maize. *Theoretical and Applied Genetics*, 109: 508-514.
  - Pritchard J. K., Stephanes M., Rosenberg N. A., and Donnelly P. (2000). Association mapping in structured populations. *American Journal of Human Genetics*, 67: 170-181.
  - Rafalski A., and Morgante M. (2004). Corn and humans: Recombination and linkage disequilibrium in two genomes of similar size. *Trends in Genetics*, 20: 103-111.
  - Ranc N., Muños S., Xu J., Le Paslier M. C., Chauveau A., Bounon R., Rolland S., Bouchet J. P., Brunel D., Causse M. (2012). Genome-wide association mapping in tomato (*Solanum lycopersicum*) is possible using genome admixture of *solanum lycopersicum* var. cerasiforme. *Genes Genomes Genetics*, 2: 853–864.
  - Ren N., and Timko M. P. (2001). AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild *Nicotiana* species. *Genome*, 44: 559-571.
  - Rosenberg N. A., Pritchard J. K., Weber J. L., Cann H. M., Kidd K. K., Zhivotovsky L. A., and Feldman M. W. (2002). The genetic structure of human populations. *Science*, 298: 2381-2385.
  - Saeed A., Darvishzadeh R., and Basirnia A. (2013). Simple sequence repeat markers associated with agro-morphological traits in chickpea (*Cicer arietinum* L.). *Zemdirbyste-Agriculture*, 100: 433-440.
  - Sharbel T. F., Haubold B., and Mitchell-Olds T. (2000). Genetic isola-tion by distance in Arabidopsis thaliana: Biogeography and postglacial colonization of Europe. *Molecular Ecology*, 9: 2109-2118.