تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,131 |
تعداد مشاهده مقاله | 4,251,644 |
تعداد دریافت فایل اصل مقاله | 2,845,995 |
AMMI analysis application for explanation of ecotype by sowing date (E×SD) interaction in ter- ms of seed yield in cumin (Cuminum cyminum L.) ecotypes | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 3، دوره 3، شماره 2 - شماره پیاپی 6، دی 2014، صفحه 19-27 اصل مقاله (360.82 K) | ||
نویسندگان | ||
Jalal Ghanbari* 1؛ Gholamreza Khajoei-Nejad2؛ Ghasem Mohammadi-Nejad3 | ||
1PhD Student in Agronomy, Young Researcher Society, Shahid Bahonar University of Kerman, Iran. P.O.Box: 76169-133. | ||
2Department of Agronomy and Plant Breeding, Shahid Bahonar University of Kerman, Iran. | ||
3Horticultural Research Institute, Shahid Bahonar University of Kerman, Iran. | ||
تاریخ دریافت: 22 فروردین 1395، تاریخ پذیرش: 22 فروردین 1395 | ||
چکیده | ||
Different responses of plant genotypes to the change of environmental conditions have been the most important and challenging issue for plant breeders and agronomists for the selection of superior genotypes. Cumin is one of the most important medicinal and aromatic plants in Iran that are strongly affected by varying environmental conditions. This study was aimed to investigate E×SD interaction and also select stable and adaptable ecotypes of cumin in different sowing dates by AMMI analysis. For this purpose different cumin ecotypes were evaluated in five sowing dates in Kerman (a semiarid region in Iran). Accordingly, nine cumin ecotypes were evaluated in a RCBD with three replications in each sowing date during growing season of 2011-12. Seed yield were measured at the end of growing season in each sowing date and the collected data were analyzed using the AMMI model. The AMMI ANOVA showed a significant variation among sowing dates, ecotypes and G×SD interaction for seed yield. For this trait, 26.95% of the total sum of squares was attributable to ecotypes, 26.15% to sowing dates, and 46.9% to E×SD, indicating high genotypic variation to sowing dates. The first two IPCA explain 72.32% of the E×SD interaction effect (43.65% and 28.67% for IPCA1 and IPCA2, respectively). Rank correlations confirmed a relationship between ASV, AMMI1, and YSI and agreement between YSI and yield in ranking ecotypes. Based on the mentioned statistics, Isfahan and Khorasan-Jonoubi were identified as unstable ecotypes. Semnan ecotype with regard to the high yield-stability reaction in different sowing dates is recommended for cultivation in semiarid regions of Iran. | ||
کلیدواژهها | ||
AMMI Model؛ Adaptability؛ Rank correlation؛ Yield stability | ||
عنوان مقاله [English] | ||
کاربرد تجزیهAMMI برای تشریح برهمکنش اکوتیپ×تاریخ کاشت (E×SD) از نظر عملکرد دانه زیره سبز (Cuminum cyminum L.) | ||
نویسندگان [English] | ||
جلال قنبری1؛ غلامرضا خواجویی نژاد2؛ قاسم محمدی نژاد3 | ||
1دانشجوی دکتری زراعت، انجمن پژوهشگران جوان، دانشگاه شهید باهنر کرمان. | ||
2بخش زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان. | ||
3پژوهشکده باغبانی، دانشگاه شهید باهنر کرمان. | ||
چکیده [English] | ||
پاسخ متفاوت ژنوتیپهای گیاهی به تغییر در شرایط محیطی یکی از مهمترین و چالش بر انگیزترین مسائل در میان اصلاح کنندگان و زارعین در انتخاب ژنوتیپهای برتر بوده است. زیره سبز یکی از مهمترین گیاهان داروئی و معطر در ایران است که به شدت تحت تأثیر شرایط متغیر محیطی قرار میگیرد. این مطالعه با هدف تفسیر برهمکنش اکوتیپ در تاریخ کاشت و همچنین انتخاب اکوتیپهای سازگار و پایدار زیره سبز در تاریخهای متفاوت کاشت بهوسیله تجزیه امی انجام گردید. بدین منظور اکوتیپهای مختلف زیره سبز در پنج تاریخ کاشت در کرمان (منطقهای نیمه خشک در ایران) مورد بررسی قرار گرفتند. بر این اساس نه اکوتیپ زیره سبز در هر تاریخ کاشت در قالب طرح بلوکهای کامل تصادفی با سه تکرار در سال زراعی 91-1390 مورد ارزیابی قرار گرفتند. در پایان فصل رشد عملکرد دانه در هر تاریخ کاشت اندازه گیری شد و داده های بهدست آمده توسط مدل امی تجزیه و تحلیل گردید. تجزیه واریانس امی نشان دهندهی اختلاف معنیدار در بین تاریخهای کاشت (SD)، اکوتیپهای مختلف (G) و اثر متقابل G×SD از نظر عملکرد دانه بود. برای این صفت از کل مجموع مربعات 95/26% به اثر اکوتیپ، 15/26% به تاریخهای کاشت و 9/46% به بر همکنش G×SD اختصاص یافت که نشان دهندهی تنوع ژنوتیپی بالا در پاسخ به تاریخهای کاشت میباشد. در مجموع IPCA1 و IPCA2 32/73 درصد از مجموع مربعات اثر متقابل G×SDرا توجیه کردند (به ترتیب 65/43% و 67/26 درصد). همبستگی رتبه اسپیرمن ارتباط مثبت بین ASV، AMMI1، و YSI و همچنین بین YSI و عملکرد را در رتبه بندی اکوتیپها تایید کرد. بر اساس آماره های مذکور اکوتیپهای اصفهان و خراسان جنوبی به عنوان اکوتیپهای ناپایدار شناخته شدند. اکوتیپ سمنان باتوجه به پایداری عملکرد بالایی که در تاریخ های متفاوت کاشت نشان داد برای کاشت در مناطق نیمه خشک ایران توصیه میگردد. | ||
کلیدواژهها [English] | ||
پایداری عملکرد, سازگاری, مدل AMMI, همبستگی رتبه | ||
مراجع | ||
Allard R. W., and Bradshaw, A. D. (1964). Implications of Genotype-Environmental Interactions in Applied Plant Breeding. Crop Science, 4: 503-508.
Balalić I., Zorić M., Branković G., Terzić S., and Crnobarac J. (2012). Interpretation of hybrid× sowing date interaction for oil content and oil yield in sunflower. Field Crops Research, 137: 70-77.
Barah B. C., Binswanger H. P., Rana B. S., and Rao G. P. (1981). The use of risk aversion in plant breeding; concept and application. Euphytica, 30: 451-458.
Bettaieb R. I., Jabri-Karoui I., Hamrouni-Sellami I., Bourgou S., Limam F., and Marzouk B. (2012). Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Industrial Crops and Products, 36: 238-245.
Crossa J. (1990). Statistical analyses of multilocation trials. Advances in Agronomy, 44. pp. 55-85.
Crossa J., Fox P. N., Pfeiffer W. H., Rajaram S., and Gauch H. G. (1991). Ammi adjustment for statistical-analysis of an International wheat yield trial. Theoretical and Applied Genetics, 81: 27-37.
Crossa J., Gauch H. G., and Zobel R. W. (1990). Additive main effect and multiplicative interaction analysis of two international maize cultivar trials. Crop Science, 30: 493-500
de la Vega A. J., Chapman S. C., and Hall A. J. (2001). Genotype by environment interaction and indirect selection for yield in sunflower. I. Two-mode pattern analysis of oil and biomass yield across environments in Argentina. Field Crops Research, 72: 17-38.
de la Vega A. J., Hall A. J., and Kroonenberg P. M. (2002). Investigating the physiological bases of predictable and unpredictable genotype by environment interactions using three-model pattern analysis. Field Crops Research, 78: 165-183.
De Vita P., Mastrangelo A. M., Matteu L., Mazzucotelli E., Virzì N., Palumbo M., Lo Storto M., Rizza F., and Cattivelli L. (2010). Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Research, 119: 68–77.
Ebdon J. S. and Gauch H. G. (2002). Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype×environment interaction. Crop Science, 42: 489-496.
Eberhart S. A. and Russell W.A. (1966). Stability parameters for comparing varieties. Crop Science, 6: 36-40.
Farshadfar E. (2008). Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan Journal of Biological Sciences, 11(14): 1791-1796.
Farshadfar E., Mahamodi N., Yaghotipoor, A. (2011) AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5 (13): 1837–1844.
Finlay K. W., and Wilkinson G. N. (1963). The analysis of adaptation in a plant breeding program. Australian Journal of Agriculture Research, 14: 742-754.
Freeman G. H., and Dowker B. D. (1973). Statistical methods for the analysis of genotype-environments. Heredity, 33:339–354.
Gabriel K. R. (1971). The biplot-graphical display of matrices with applications to principal components analysis. Biometrika, 58: 453-467.
Gauch H.G. (1992). Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs. Elsevier Science Publishers, Amsterdam, The Netherlands.
Gauch H. G., and Zobel R. W. (1997). Identifying mega-environments and targeting genotypes. Crop Science, 37: 311–326.
Gauch H. G., and Zobel R. W. (1988). Predictive and postdictive success of statistical analysis of yield trials. Theoretical and Applied Genetics, 76: 1-10.
Ghanbari J., and Khajoie Nejad G. R. (2014). Evaluation of yield and agronomic traits of cumin (Cuminum cyminum L.) ecotypes in different sowing dates at Kerman region. Journal of Agroecology, 6(1): 142-151.
Gomez K. A., and Gomez A. A. (1984). Statistical procedures for agricultural research. (2nd ed.). Wiley, New York.
Kafi M., Rashed Mohassel M. H., Koocheki A., Nassiri M. (2006). Cumin (Cuminum Cyminum): Production and Processing. Science Publishers,U.S., Enfield, New Hampshire.
Kamkar B., Koocheki A., Nassiri Mahallati M., Teixeira da Silva J. A., Rezvani Moghaddam, P., and Kafi
M. (2011). Fungal diseases and inappropriate sowing dates, the most important reducing factors in cumin fields of Iran, a case study in Khorasan provinces. Crop Protection, 30: 208-215.
Kang M. S. (1993). Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agronomy Journal, 85: 754–757.
Kang M. S. (1998). Using genotype-by-environment interaction for crop cultivar development, Advances in Agronomy, 62: 199-252.
Lal R. K. (2013). Adaptability patterns and stable cultivar selection in menthol mint (Mentha arvensis L.). Industrial Crops and Products, 50: 176-181.
Lal R. K. (2015). Genotype selection for agronomical trait - seed yield in kewachh (Mucuna pruriens L.). Industrial Crops and Products, 65: 62-70.
Laux P., Jackel G., Munang Tingem R., and Kunstmann H. (2010). Impact of climate change on agricultural productivity under rainfed conditions in Cameroon. A method to improve attainable crop yields by planting date adaptations. Agricultural and Forest Meteorology, 150: 1258-1271.
Purchase J. L., Hatting H., and Vandeventer C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: Π. Stability analysis of yield performance. South African Journal of Plant and Soil, 17: 101-107
Ramburan S., Zhou M., and Labuschagne M. (2011). Interpretation of genotype × environment interactions of sugarcane: Identifying significant environmental factors. Field Crops Research, 124: 392-399.
Rezvani Moghaddam P., Moradi R., and Mansoori H. (2014). Influence of planting date, intercropping and plant growth promoting rhizobacteria on cumin (Cuminum cyminum L.) with particular respect to disease infestation in Iran. Journal of Applied Research on Medicinal and Aromatic Plants, 1: 134-143.
Roostaei M., Mohammadi R., and Amri A. (2014). Rank correlation among different statistical models in ranking of winter wheat genotypes. The crop journal, 2: 154-163.
SAS Institute Inc. (2009). SAS/STAT® 9.2. Users Guide, second ed. SAS Institute Inc., Cary, NC.
Simmonds N. W. (1991). Selection for local adaptation in a plant breeding program. Theoretical and Applied Genetics, 82: 363-367.
Tumuhimbise R., Melis R., Shanahan P., and Kawuki. R. (2014). Genotype × environment interaction effects on early fresh storage root yield and related traits in cassava. The crop Journal, 2: 329-337.
Zhang X. L., Chun Y. Y., Ran X.U., Wei-Guo L., Yong Q., Li-Feng Z., Ru-Zhen C., and Li-Juan Q. (2011). Analysis of Adaptability of Soybean Mini Core Collection in Huang-Huai Rivers Region in China. Acta Agronomica Sinica, 37(3): 443-451.
Zobel R. W., Wright M. J. and Gauch H. G. (1988) Statistical analysis of a yield trial. Agronomy Journal, 80: 388-393. | ||
آمار تعداد مشاهده مقاله: 1,564 تعداد دریافت فایل اصل مقاله: 1,529 |