تعداد نشریات | 19 |
تعداد شمارهها | 380 |
تعداد مقالات | 3,121 |
تعداد مشاهده مقاله | 4,250,727 |
تعداد دریافت فایل اصل مقاله | 2,844,945 |
Variability in antioxidant activity and phenolic profile in different parts of sunflower (Helianthus annuus L.) genotypes | ||
Iranian Journal of Genetics and Plant Breeding | ||
مقاله 6، دوره 3، شماره 2 - شماره پیاپی 6، دی 2014، صفحه 53-60 اصل مقاله (420.81 K) | ||
نویسندگان | ||
Asaad Aghaei1؛ Reza Darvishzadeh* 2، 3؛ Ali Asghar Hatamnia4؛ Farhad Ghavami5 | ||
1Department of Biology, Faculty of Science, Urmia University, Urmia, Iran. | ||
2Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran. | ||
3Institute of Biotechnology, Urmia University, Urmia, Iran. | ||
4Department of Biology, Faculty of Science, Ilam University, Ilam, Iran. | ||
5Chief Science Officer (CSO) Eurofins BioDiagnostics Inc, River Falls, Wisconsin, USA. | ||
تاریخ دریافت: 22 فروردین 1395، تاریخ پذیرش: 22 فروردین 1395 | ||
چکیده | ||
Sunflower (Helianthus annuus L.) is largely consumed in Iran as an oleaginous and confectionery product. In this study, the total phenolic and flavonoid contents, antioxidant activity and phenolic composition in different parts of the seeds from six sunflower genotypes were investigated. The antioxidant activity of extract was evaluated by different assays. The total phenolic and flavonoid contents in kernel were 6.8 and 4.1 times higher than those in shell. Antioxidant activity of kernel extract was significantly higher than shell. It can be attributed to higher total phenolic and flavonoid content. In kernel extracts, a positive correlation coefficient was observed between total phenolic content and FRAP (r = 0.636) and Nitric oxide radical inhibition (r= 0. 721) assays. The amount of identified phenolic compounds varied in different extracts and ranged from 0.29 µg/g (Vanillic acid, shell of S5 genotype) to 433.6 µg/g (Syringic acid, kernel of S2 genotype). Therefore, the result indicated that kernel sunflower seeds can be used as potent natural antioxidants in diet. | ||
کلیدواژهها | ||
Antioxidant activity؛ Kernel؛ Phenolic composition؛ Shell؛ Sunflower | ||
عنوان مقاله [English] | ||
تنوع در فعالیت ضداکسایشی و ترکیب فنلی قسمتهای مختلف ژنوتیپهای آفتابگردان (.Helianthus annuus L) | ||
نویسندگان [English] | ||
اسعد آقایی1؛ رضا درویش زاده2، 3؛ علی اصغر حاتم نیا4؛ فرهاد قوامی5 | ||
1دانش آموخته کارشناسی ارشد فیزیولوژی گیاهی، گروه زیست شناسی دانشکده علوم دانشگاه ارومیه. | ||
2استاد گروه اصلاح و بیوتکنولوژی گیاهی دانشکده کشاورزی دانشگاه ارومیه. | گروه بیوتکنولوژی کشاورزی پژوهشکده زیست فناوری دانشگاه ارومیه. | ||
3استاد گروه اصلاح و بیوتکنولوژی گیاهی دانشکده کشاورزی دانشگاه ارومیه. | گروه بیوتکنولوژی کشاورزی پژوهشکده زیست فناوری دانشگاه ارومیه. | ||
4استادیار گروه زیست شناسی دانشکده علوم دانشگاه ایلام. | ||
5معاونت علوم و فناوری شرکت یوروفینز بیو دایاگنوستیک، ریور فالز، ویسکانسین، آمریکا. | ||
چکیده [English] | ||
آفتابگردان (.Helianthus annus L) در ایران اکثرا به صورت یک محصول روغنی و آجیلی به مصرف میرسد. در این مطالعه محتوی فنل و فلاوونوئید کل، فعالیت ضداکسایشی و ترکیب فنلی در قسمتهای مختلف دانه شش ژنوتیپ آفتابگردان مورد ارزیابی قرار گرفت. فعالیت ضداکسایشی عصارهها با استفاده از سنجشهای متفاوتی ارزیابی گردید. محتوی فنل و فلاوونوئید کل در مغز دانه به ترتیب 8/6 و 1/4 برابر میزان آنها در پوسته بود. فعالیت ضداکسایشی عصاره مغز به طور معنیداری بیشتر از عصاره پوسته بوده که میتوان آن را به میزان بالای محتوی فنل و فلاوونوئید نسبت داد. در عصارههای مغز، ضریب همبستگی مثبت بین محتوی فنل کل با FRAP (636/0=r) و ظرفیت جمعآوری رادیکال نیتریت (721/0=r) مشاهده گردید. میزان ترکیبات فنلی شناسایی شده در عصاره های مختلف از 29/0 میکروگرم برگرم (اسید وانیلیک، پوستۀ ژنوتیپ S5) تا 6/433 میکروگرم بر گرم (سینرژیک اسید، مغز ژنوتیپ S2) متفاوت بود. بنابراین، نتایج نشان داد که مغز دانههای آفتابگردان را میتوان بعنوان ضداکساینده های طبیعی در رژیم غذایی مورد استفاده قرار داد. | ||
کلیدواژهها [English] | ||
آفتابگردان, پوسته دانه, ترکیب فنلی, فعالیت ضداکسایشی, مغز دانه | ||
مراجع | ||
Akbari V., Jamei R., Heidari R., and Jahanban Sfahlan, A. (2012). Antioxidant activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chemistry, 135: 2404–2410.
Barreira J. C. M., Ferreira I. C. F. R., Oliveira M. B. P. P., and Pereira, J. A. (2008). Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food and Chemical Toxicology, 46: 2230-2235.
Benzie I. F., and Strain J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power": The FRAP assay. Analytical Biochemistry, 239: 70-76.
Farhoosh R., Tavassoli- Kafrani M. H., and Sharif A. (2011). Antioxidant activity of the fractions separated from the unsaponifiable matter of bene hull oil. Food Chemistry, 126, 583-589.
Garrat D. C. (1964). The quantitative analysis of drugs. (3th ed.). Tokyo: Chapman and Hall.
Gonzalez-Perez S., and Vereijken J. M. (2007). Sunflower proteins: Overview of their physicochemical, structural and functional properties. Journal of the Science of Food and Agriculture, 87: 2173-2191.
Halvorsen B. L., Holte K., Myhrstad M. C., Barikmo I., Hvattum E., Remberg S. F., Wold A. B., Haffner K., Baugerod H., Andersen L. F., Moskaug J. O., Jacobs D. R., and Blomhoff R. (2002). A systematic screening of total antioxidants in dietary plants. The Journal of Nutrition, 132: 461-471.
Hamed S. F., Wagdy S. M., and Megahed M. G. (2012). Chemical Characteristics and Antioxidant Capacity of Egyptian and Chinese Sunflower Seeds: A Case Study. Life Science Journal, 9: 320-328.
Harborne J. B., and Williams C. A. (2000). Advances in flavonoids research since 1992. Phytochemistry, 55: 481-504.
Hatamnia A. A., Abbaspour N., and Darvishzadeh R. (2014). Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food Chemistry, 145: 306-311.
Hatamnia A. A., Rostamzad A., Malekzadeh P., Darvishzadeh R., Abbaspour N., Hosseini M., Nourollahi Kh., and Sheikh Akbari Mehr R. (2016a). Antioxidant activity of different parts of Pistacia khinjuk Stocks fruit and its correlation to phenolic composition. Natural Product Research, DOI: 10.1080/14786419.2015.1060593.
Hatamnia A. A., Rostamzad A., Hosseini M., Abbaspour N., Darvishzadeh R., Malekzadeh P., and Mohammad Aminzadeh, B. (2016b). Antioxidant capacity and phenolic composition of leaves from ten Bene (Pistacia atlantica subsp. kurdica) genotypes. Natural Product Research, 30: 600-604.
Heim K. E., Tagliaferro A. R., and Bobilya D. J. (2002).Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13: 572-584.
Hertog M. G. L., Hollman P. C. H., and Venema D. P. (1992). Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. Journal of Agriculture and Food Chemistry, 40: 1591-1598.
Huang D., Ou B., and Prior R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53: 1841-1856.
Iris F. F., Benzie I. F., and Strain J. J. (1999). Ferric reducing Antioxidant Power assay. Methods in Enzymology, 299: 15-27.
Kalt W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70: R11- R19.
Karamac M., Kosinska A., and Pegg R.B. (2005).Comparison of radical-scavenging activities for selected phenolic acids. Polish Journal of Food and Nutrition Sciences, 55: 165-170.
Kornsteiner M., Wagner K.H., and Elmadfa I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98: 381-387.
Kourie J. I. (1998). Interaction of reactive oxygen species with ion transport mechanism. American Journal of Physiology: Cell Physiology, 275: 1-24.
Lenucci M. S., Cadinu D., Taurino M., Piro G., and Dalessandro G. (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. Journal of Agricultural and Food Chemistry, 54: 398-415.
Lu G., and Hoeft E. (2009). Sunflower. In: C. Kole, & T.C. Hall, (Eds.), A compendium of transgenic crop plants (pp. 125–168). London: Wiley-Blackwell.
Mahdavi D. L., and Salunkhe D. K. M. (1995). Toxicological aspects of food antioxidant. In: D. L. Mahdavi, S. S. Deshpande, & D. K. Salunkhe (Eds.), Food antioxidants (pp. 267–293). New York: Marcel Dekker.
Nilsson J., Pillai D., Onning G., Persson C., Nilsson A., and Akesson, B. ( 2005). Comparison of the 2,2'-azinobis-3- ethylbenzotiazo-line-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total antioxidant capacity in extracts of fruit and vegetables. Molecular Nutrition & Food Research, 49: 239-246.
Pedrosa M. M., Muzquiz M., Garcıa-Vallejo C., Burbano C., Cuadrado C., Ayet G., and Robredo L. M. (2000). Determination of caffeic and chlorogenic acids and their derivatives in different sunflower seeds. Journal of the Science of Food and Agriculture, 80: 459-464.
Prior R. L., and Cao G. (1999). In vivo total antioxidant capacity: Comparison of different analytical methods. Free Radical Biology & Medicine, 27: 1173-1181.
Salunkhe D. K., Chavan J. K., Adsule R. N., and Kadam S. S. (1992). World oil seeds: Chemistry, Technology, and Utilization. New York: Van Nostrand Reinhold.
Santas R., Carbo-Gordon M. H., and Almajano M. P. (2008). Comparison of the antioxidant activity of two Spanish onion varieties. Food Chemistry, 107: 1210-1216.
Shahidi F., Janitha P. K., and Wanasundara P. D. (1992).Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 32: 67-103.
Singleton V. L., Orthofer R., and Lamuela-Raventos R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299: 152-178.
Szydłowska-Czerniak A., Trokowski K., and Szłyk E. (2011). Optimization of extraction conditions of antioxidants from sunflower shells (Helianthus annuus L.) before and after enzymatic treatment. Industrial Crops and Products, 33: 123-131.
Temple N.J. (2000). Antioxidants and disease: more questions than answers. Nutrition Research, 20: 449-459.
Thiago Inacio B. L., Roberta G. C., Nidia C. Y., and Neli K. H. (2008).Radical scavenging activity of orsellinates. Chemical & Pharmaceutical Bulletin, 56: 1551-1554.
Tsantili E., Shin Y., Nock J. F., and Watkins C. B. (2010). Antioxidant concentrations during chilling injury development in peaches. Postharvest Biology and Technology, 57: 27-34.
Velioglu Y. S., Mazza G., Gao L., and Oomah B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113-4117.
Wijeratne S. S. K., Abou-Zaid M. M., and Shahidi F. (2006). Antioxidant polyphenols in almond and its coproducts. Journal of Agricultural and Food Chemistry, 54: 312-318.
Wu H. C., Chen H. M., and Shiou C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36: 949-957. | ||
آمار تعداد مشاهده مقاله: 1,912 تعداد دریافت فایل اصل مقاله: 1,697 |