
تعداد نشریات | 20 |
تعداد شمارهها | 401 |
تعداد مقالات | 3,281 |
تعداد مشاهده مقاله | 4,653,126 |
تعداد دریافت فایل اصل مقاله | 3,158,226 |
Evaluation of biochemical traits and gene expression in wild and mutant rice cultivars under salt stress | ||
Iranian Journal of Genetics and Plant Breeding | ||
دوره 13، شماره 2 - شماره پیاپی 26، دی 2024، صفحه 41-52 اصل مقاله (716.33 K) | ||
نوع مقاله: Research paper | ||
شناسه دیجیتال (DOI): 10.30479/ijgpb.2025.20801.1376 | ||
نویسندگان | ||
Hourieh Najafi1؛ Saeid Navabpour* 1؛ Ahad Yamchi1؛ Elahe Tavakol2 | ||
1Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. | ||
2Department of Plant Breeding and Plant Biotechnology, Shiraz Agricultural University, Shiraz, Iran. | ||
تاریخ دریافت: 18 شهریور 1403، تاریخ بازنگری: 26 فروردین 1404، تاریخ پذیرش: 27 فروردین 1404 | ||
چکیده | ||
Salinity stress is one of the most significant abiotic challenges affecting crop production worldwide, posing a serious threat to agricultural yields globally. Rice, which ranks second in global production after wheat, is particularly sensitive to salt stress. Developing salinity-tolerant rice varieties is crucial for mitigating yield reductions in saline environments. Therefore, investigating and identifying the expression patterns of effective genes in response to salinity stress is essential for introducing tolerant genotypes. In this study, we examined an advanced mutant line of Hashemi rice (tolerant to salinity stress) resulting from gamma-ray irradiation, alongside its wild counterpart (Hashmi line - sensitive to salt stress). Both lines were subjected to salt stress in randomized complete block design with three replications using a hydroponic solution. The main factors in the factorial design included salinity treatment (0, 100, and 150 mM sodium chloride) and sampling time, with genotypes as the sub-factor. We evaluated biochemical traits and gene expression post-salt stress through qRT-PCR analysis. The results indicate significant effects of salinity stress on biochemical traits and gene expression in both wild and mutant rice cultivars. The mutants showed lower sensitivity to salinity compared to the wild cultivar, as evidenced by changes in biochemical traits, including chlorophyll content, antioxidant capacity, and sodium and potassium ion concentrations. Additionally, gene expression analysis revealed that several salinity tolerance-associated genes, such as superoxide dismutase and catalase, were expressed at higher levels in the mutants than in the wild cultivar. These findings suggest that different mechanisms are involved in the response to salinity stress between the wild and mutant cultivars, which could inform breeding strategies aimed at enhancing salt tolerance in rice. Consequently, this study lays the groundwork for future research into identifying and analyzing salt tolerance genes in rice and other agricultural crops, ultimately aiming to develop effective strategies to mitigate environmental stresses. | ||
کلیدواژهها | ||
Antioxidant genes؛ Mutation؛ Rice؛ Salinity | ||
عنوان مقاله [English] | ||
ارزیابی صفات بیوشیمیایی و بیان ژن در ارقام برنج وحشی و جهش یافته تحت تنش شوری | ||
نویسندگان [English] | ||
حوریه نجفی1؛ سعید نواب پور1؛ احد یامچی1؛ الهه توکل2 | ||
1گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
2گروه اصلاح نباتات و بیوتکنولوژی گیاهی ، دانشگاه کشاورزی شیراز، شیراز، ایران. | ||
چکیده [English] | ||
تنش شوری به عنوان یکی از مهمترین تنشهای غیرزیستی مؤثر بر تولید محصول در سراسر جهان شناخته میشود بنابراین، بررسی و شناسایی الگوهای بیان ژنهای موثر در پاسخ به تنش شوری برای معرفی ژنوتیپهای متحمل ضروری است. در این تحقیق، لاین جهش یافته پیشرفته برنج هاشمی (متحمل به تنش شوری) حاصل از تابش پرتو گاما و لاین وحشی آن (لاین هاشمی - حساس به تنش شوری)، در کرت های بلوک های تصادفی با سه تکرار با محلول هیدروپونیک تحت تنش شوری قرار گرفتند. فاکتور اصلی در طرح فاکتوریل، تیمار شوری (0، 100 و 150 میلی مولار کلرید سدیم) و زمان نمونهبرداری با ژنوتیپها به عنوان فاکتور فرعی بود. صفات بیوشیمیایی و بیان ژن از طریق آنالیز qRT-PCR مورد بررسی قرار گرفتاین مطالعه نشان داد که جهشیافتهها نسبت به رقم وحشی حساسیت کمتری نسبت به شوری نشان میدهند که با تغییرات در سطوح صفات بیوشیمیایی مانند محتوای کلروفیل، ظرفیت آنتیاکسیدانی و غلظت یونهای سدیم و پتاسیم مشهود است. از نظر بیان ژن، نتایج نشان داد که چندین ژن مرتبط با تحمل به شوری از جمله سوپراکسید دیسموتاز و کاتالاز در سطوح بالاتری در جهش یافته ها نسبت به رقم وحشی بیان شدند. این یافتهها نشان میدهد که مکانیسمهای مختلفی در پاسخ به تنش شوری بین رقم وحشی و جهشیافتهها وجود دارد که میتواند استراتژیهای اصلاحی را با هدف افزایش تحمل به نمک در برنج ارائه دهد. در نتیجه، این مطالعه زمینه را برای تحقیقات بیشتر در شناسایی و تجزیه و تحلیل ژنهای تحمل به نمک در برنج و سایر محصولات کشاورزی با هدف نهایی توسعه استراتژیهای موثر برای کاهش تنشهای محیطی فراهم میکند. | ||
کلیدواژهها [English] | ||
شوری, جهش, ژن های آنتی اکسیدان, برنج | ||
مراجع | ||
Abdelaziz M., Xuan T., Mekawy A., Wang H., and Khanh T. (2018). Relationship of salinity tolerance to Na+ exclusion, proline accumulation, and antioxidant enzyme activity in rice seedlings. Agriculture, 8(11): 166. Aebi H. (1984). Catalase in vitro. Methods in Enzymology, 105: 121-126. Alam, N. B., and Ghosh, A. (2018). Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses. Plant Physiology and Biochemistry, 123: 54-64. Alam M. S., Tester M., Fiene G., and Mousa M. A. A. (2021). Early growth stage characterization and the biochemical responses for salinity stress in tomato. Plants, 10(4): 712. Al-Tawaha A. R., Samarah N., and Ranga A. D. (2021). In Book: Sustainable Soil and Land Management and Climate Change (pp. 83-93), Edition: 1, Chapter: 7, Taylor & Francis Group, CRC Press, UK. Anjum N. A., Sharma P., Gill S. S., Hasanuzzaman M., et al. (2016). Catalase and ascorbate peroxidase—Representative H2O2 -detoxifying heme enzymes in plants. Environmental Science and Pollution Research, 23: 19002-19029. Ashrafi A., Razmjoo J., and Zahedi M. (2015). Investigating the effect of salinity stress on the biochemical characteristics of seedlings and its relationship with salinity tolerance of alfalfa cultivars under field conditions. Applied Agricultural Research, 28(4): 43-56. Askari Kolestani A. R., Ramadanpour S. S., Barzoui A., Sultanlou H., and Navabpour S. (2016). Study of biochemical and molecular changes of salt tolerance in bread wheat lines (Triticum aestivum L.) irradiated with gamma rays. PhD Thesis, Gorgan University of Agriculture and Natural Resources. (In Persian) Banu M. N. A., Hoque M. A., Watanabe-Sugimoto M., Islam M. M., et al. (2010). Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells. Bioscience, Biotechnology, and Biochemistry, 74(10): 2043-2049. Beyer Jr W. F., and Fridovich I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2): 559-566. Bhabak K. P., and Mugesh G. (2010). Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Accounts of Chemical Research, 43: 1408-1419. Bilska K., Wojciechowska N., Alipour S., and Kalemba E. M. (2019). Ascorbic acid—the little-known antioxidant in woody plants. Antioxidants, 8: 645. Broadbent P., Creissen G. P., Kular B., Wellburn A. R. and Mullineaux P. M. (1995). Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. The Plant Journal, 8(2): 247-255. Chauhan B. S., Jabran K., and Mahajan G. (2017). Rice production worldwide. Springer International Publishing AG, Switzerland, pp. 563. Chen H. J., Wu S. D., Huang G. J., Shen C. Y., Afiyanti M., Li W. J., and Lin Y. H. (2012). Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. Plant Physiology, 169: 86-97. Chen T., Shabala S., Niu Y., Chen Z. H., et al. (2021). Molecular mechanisms of salinity tolerance in rice. The Crop Journal, 9(3): 506-520. Chen Y., Zhou Y., Cai Y., Feng Y., Zhong C., Fang Z., and Zhang Y. (2022). De novo transcriptome analysis of high-salinity stress-induced antioxidant activity and plant phytohormone alterations in Sesuvium portulacastrum. Frontiers in Plant Science, 13: 995855. Correa-Aragunde N., Foresi N., Delledonne M., and Lamattina L. (2013). Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. Journal of Experimental Botany, 64: 3339-3349. Foyer C., and Noctor G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155: 2-18. Ganie S. A., Molla K. A., Henry R. J., Bhat K. V., and Mondal T. K. (2019). Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 132(4): 851-870. Ganie S. A., Wani S. H., Henry R., and Hensel G. (2021). Improving rice salt tolerance by precision breeding in a new era. Current Opinion in Plant Biology, 60: 101996. Gao H., Liu C. P., Song S. Q., and Fu J. (2016). Effects of dietary selenium against lead toxicity on mRNA levels of 25 selenoprotein genes in the cartilage tissue of broiler chicken. Journal of Biological Trace Element Research, 172(1): 234-241. Ghosh B., Ali M. N., and Saikat G. (2016). Response of rice under salinity stress: a review update. Journal of Rice Research, 4: 167. Gill S. S., and Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909-930. Gupta B., and Huang B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014: 701596. Fakhrfeshani M., Shahriari Ahmadi F. A., Zare Mehrjerdi M., and Keykha Akhar F. (2024). Evaluation of structure and expression variation of Cu/Zn SOD enzyme of Aeluropus and IR64 rice as an aspect of their different salinity based oxidative stress tolerance. Environmental Stresses in Agricultural Sciences,17(1): 47-60. Hameed A., Akram N. A., Saleem M. H., Ashraf M., et al. (2021). Seed treatment with α-tocopherol regulates growth and key physio-biochemical attributes in carrot (Daucus carota L.) plants under water limited regimes. Agronomy, 11: 469. Hazman M., Hause B., Eiche E., Nick P., and Riemann M. (2015). Increased tolerance to salt stress in OPDA-deficient rice allene oxide cyclase mutants is linked to an increased ROS-scavenging activity. Journal of Experimental Botany, 66(11): 3339-3352. Hu L., Yang Y., Jiang L., and Liu S. (2016). The catalase gene family in cucumber: Genome-wide identification and organization. Genetics and Molecular Biology, 39: 408-415. Huanhe W., Weiyi M., Xiang Z., Boyuan Z., et al. (2024). Salinity stress deteriorates grain yield and increases 2-acetyl-1-pyrroline content in rice. Rice Science, 31(4): 371-374. Jayakannan M., Bose J., Babourina O., Rengel Z., and Shabala S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76(1): 25-40. Joo J., Lee Y. H., Song S. I. (2014). Rice CatA, CaB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively. Journal of Plant Biology, 57: 375-382. Kaushal J., Mehandia S., Singh G., Raina A., and Arya S. K. (2018). Catalase enzyme: Application in bioremediation and food industry. Biocatalysis and Agricultural Biotechnology, 16: 192-199. Kamrava S., Babaeian Jellodar N. A., Bagheri N. A., and Nazarian-Firouzabadi F. (2024). Investigating the expression pattern of SAPK1 gene from protein kinase gene group (SNF1- Type) in rice (Oryaza sativa) plants under salt stress. Crop Production Journal, 17(1): 169-186. Kaya C., Akram N. A., Ashraf M., and Sonmez O. (2018). Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Research Communications, 46(1): 67-78. Kazemi G., Navabpour S., and Ramezanpour S. S. (2010). Evaluation of catalase gene expression and morphological traits in two wheat cultivar under salt stress. Modern Genetic Journal, 7(1): 79-87. (In Persian) Kiani D., Soltanloo H., Ramezanpour S. S., Qumi A. N., Yamchi A., Nezhad K. Z., and Tavakol E. (2017). A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta Physiologiae Plantarum, 39(3): 90. Lin K. C., Jwo W. S., Chandrika N. N. P., Wu T. M., Lai M. H., Wang C. S., and Hong C. Y. (2016). A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress. Biologia Plantarum, 60(1): 86-94. Lu S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5): 3143-3153. Malar S., Vikram S. S., Favas P. J., and Perumal V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55(1): 54. Meloni D. A., Oliva M. A., Martinez C. A., and Cambraia J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49(1): 69-76. Moloudi F., Navabpour S., Soltanloo H., Ramezanpour S. S., and Sadeghipour H. (2013). Catalase and metallothionein genes expression analysis in wheat cultivars under drought stress condition. Journal of Plant Molecular Breeding, 1(2): 58-64. Nabiollahi K., Taghizadeh -Mehrjardi R., Kerry R., and Moradian S. (2017). Assessment of soil quality indices for salt - affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83: 482-494. Nakano Y., and Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5): 867-880. Okamura M., Umemoto N., and Onishi N. (2012). Breeding glittering carnations by an efficient mutagenesis system. Plant Biotechnology, 29: 209-214. Passaia G., Fonini L. S., Caverzan A., Jardim-Messeder D., Christoff A. P., and Gaeta, M. L. (2013). The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Journal of Plant Sciences, 208: 93-101. Pour-Aboughadareh A., Sanjani S., and Nikkhah-Chamanabad H. (2021). Identification of salt tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bulletin of the National Research Centre, 45: 1-16. Qiao K., Fang C., Chen B., Liu Z., et al. (2020). Molecular characterization, purification, and antioxidant activity of recombinant superoxide dismutase from the Pacific abalone Haliotis discus hannai Ino. World Journal of Microbiology and Biotechnology, 36(8): 115. Qin H., Li Y., and Huang R. (2020). Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 21(21): 8385. Rahantaniaina M. S., Li S., Chatel-Innocenti G., Tuzet A., Mhamdi A., Vanacker H., and Noctor G. (2017). Glutathione oxidation in response to intracellular H2O2: key but overlapping roles for dehydroascorbate reductases. Plant Signaling & Behavior, 12(8): e1356531. Rasel M., Tahjib-Ul-Arif M., and Hossain M. A. (2021). Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. Journal of Plant Growth Regulation, 40: 1853-1868. Razzaq A., Ali A., Safdar L. B., Zafar M. M., et al. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science, 85(1): 14-20. Rodríguez Coca L. I., García González M. T., Gil Unday Z., Jiménez Hernández J., Rodríguez Jáuregui M. M., and Fernández Cancio Y. (2023). Effects of sodium salinity on rice (Oryza sativa L.) cultivation: A review. Sustainability, 15(3): 1804. Sairam R. K., and Tyagi A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86(3): 407-421. Saleem M. H., Fahad S., Khan S. U., Din M., et al. (2020). Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environmental Science and Pollution Research, 27: 5211-5221. Shafi A., Gill T., Sreenivasulu Y., Kumar S., Ahuja P. S., and Singh A. K. (2015). Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma, 252(1): 41-51. Sharma P., Jha A. B., Dubey R. S., and Pessarakli M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: 217037. Smith I. K., Vierheller T. L., and Thorne C. A. (1989). Properties and functions of glutathione reductase in plants. Physiologia Plantarum, 77(3): 449-456. Stevens G. A., Beal T., Mbuya M. N. N., Luo H., and Neufeld L. M. (2022). Micronutrient defciencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. Lancet Glob Health, 10: 1590-1599. Vighi I., Benitez L., do Amaral M., Auler P., et al. (2016). Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress. Genetics and Molecular Research, 15: 15048977. Wang M., Zhao X., Xiao Z., Yin X., Xing T., and Xia G. (2016). A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Molecular Biology, 91(1-2): 115-130. Wang W., Cheng Y., Chen D., Liu D., et al. (2019) The catalase gene family in cotton: Genome-wide characterization and bioinformatics analysis. Cells, 8: 86. Wang D., Yang N., Zhang C., He W., Ye G., Chen J., and Wei X. (2022). Transcriptome analysis reveals molecular mechanisms underlying salt tolerance in halophyte Sesuvium portulacastrum. Frontiers in Plant Science, 13: 973419. Yoshida S., Forne D. A., Cock J. H., and Gomez A. (1976). Laboratory manual for physiological studies of rice. Third Ed., International Rice Research Institute, Manila, Philippines. Zeeshan M., Lu M., and Sehar S. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy, 10: 127. Zhang A. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39: 47. Zhang H., Cui F., Wu Y., Lou L., et al. (2015). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-interacting protein1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. The Plant Cell, 27(1): 214-227. Zheng C., Liu C., Liu L., Tan Y., et al. (2023). Effect of salinity stress on rice yield and grain quality: A meta-analysis. European Journal of Agronomy, 144: 126765. Zhou G., Johnson P., Ryan P. R., Delhaize E., and Zhou M. (2012). Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Molecular Breeding, 29: 427-436. Zhou Y., Tang N., Huang L., Zhao Y., Tang X., and Wang K. (2018). Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences, 19(1): 252. Zou, Z., Xi, W., Hu, Y., Nie, C., and Zhou, Z. (2016). Antioxidant activity of Citrus fruits. Food Chemistry, 196: 885-896. | ||
آمار تعداد مشاهده مقاله: 119 تعداد دریافت فایل اصل مقاله: 38 |